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Abstract — In this paper, we examinea class
of block ciphers referred to as substitution-
permutation networks or SPNs. We assert
that the basic SPN architecture can be used
to provide an efficient implementation of a
secure block cipher if the systemS-boxesare
carefully selectedand connectedwith an ap-
propriate linear transformation. Specifically,
it is shown that

�����
S-boxeswhich pos-

sessgood diffusion and nonlinearity proper-
ties may be effectively usedascomponentsof
a secure block cipher. As well, it is demon-
strated that the cipher may be strengthened
by replacing the permutation of bits between
S-box rounds with a diffusive linear trans-
formation.

�
. Introduction

Sinceits introductionin 1977,theDataEncryp-
tion Standard(DES) [1] has becomethe most
widely applied private key block cipher. Re-
cently, a hardwaredesignto effectively break
DES using exhaustivesearchwas outlined by
Wiener [2]. Unfortunately,since the DES de-
signprincipleshaveneverbeenfully disclosed,
it is not generally known how to efficiently
modify the DES algorithm to allow for dif-
ferent block or key sizes. This suggeststhat
there is a needto replaceDES with a secure,
flexible block cipher whosedesignis well un-
derstood. In this paper,we contribute to the
achievementof this objective by examininga

simple, yet elegantclassof block ciphers re-
ferred to as substitution-permutationnetworks
or SPNs.

Feistel [3][4] was the first to suggestthat an
SPNarchitectureconsistingof roundsof nonlin-
earsubstitutions(S-boxes)connectedby bit po-
sition permutationswasa simple,effective im-
plementationof Shannon’sconceptof a “mix-
ing transformation” basedon the principles of
“confusion” and“dif fusion” [5]. Many modern
block ciphers, including DES, FEAL [6], and
LOKI [7], while deviatingfrom Feistel’sbasic
SPNmodel,arebasedon Shannon’sfundamen-
tal concepts.

In this paper,we show that appropriatelyse-
lectedS-boxesandS-boxinterconnectiontrans-
formationscanbeusedto increasea cipher’sre-
sistanceto differential [8] and linear cryptanal-
ysis[9] andarealsoeffectivein improvinga ci-
pher’sadherenceto theimportantcryptographic
propertyreferredto asthestrict avalanchecrite-
rion (SAC) [10]. In particular,we examinethe
useof large ���	� S-boxesthat areselectedto
provide strongdiffusion and nonlinearitychar-
acteristicsandwe analyzetheeffectivenessof a
novel applicationof linear transformationsbe-
tween roundsof S-boxes.

�
�
. Background

We shall considera general� -bit SPNascon-
sistingof � roundsof ��� S-boxes.Theplain-
text andciphertextare � -bit vectorsdenotedas
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, re-
spectively.An S-box in the network is defined
asan  -bit bijective mapping � . A simpleex-
ampleof an SPNis illustratedin Figure1.

In general,S-boxesmay be keyed by (1) us-
ing key bits to selectwhich mappingsareused
for the S-boxesor (2) XORing key bits with
networkbits prior to enteringthe S-boxes.We
shall assumein our discussionthat thenetwork
is keyed by XORing � bits of key (as deter-
minedby the key schedulingalgorithm)before
eachroundandafter the last roundof substitu-
tions. Decryptionis performedby running the
data backwardsthrough the network (i.e., ap-
plying the key schedulingalgorithm in reverse
and using the inverseS-boxes).

Ratherthan strictly confining ourselvesto the
basicform of S-boxesconnectedby a bit posi-
tion permutation,in this paperwe considerthe
more generalmodel of S-boxesconnectedby
invertible linear transformations.However,for
consistency,we still refer to the more general
architectureas an SPN.

�
� �
. Important Cryptographic

Properties

In general,weconsiderthatcryptographicprop-
ertiesmay becategorizedaseitherstaticor dy-
namic. Staticpropertiesencompasstherelation-
shipsamongplaintext, ciphertext,and key bits
whentheplaintextor key bits arenot changing;
dynamicpropertiesrefer to the relationshipsof
plaintext,ciphertext,andkey bit changeswhen
a subsetof plaintextor key bits arechanged.

Importantstatic propertiesinclude:

(S1) completeness [11]

• each ciphertext bit is a function of all
plaintext and key bits
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Figure 1. SPNwith �����! , "��$# , and %&�'#

(S2) nonlinearity [12]

• eachciphertextbit haslow correlationto
a linear systemequation

(S3) static information theoretic properties [13]

• partial knowledge of plaintext/key bits
doesnot revealany informationaboutthe
ciphertext

Importantdynamicpropertiesinclude:

(D1) strict avalanche criterion (SAC) [10]

• aonebit plaintext/keychangecauseseach
ciphertextbit to changewith aprobability
of 1/2

(D2) low probability differential characteristics
[8]

• occurrenceof a particular sequenceof
XOR differential pairs correspondingto
eachround is unlikely
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(D3) dynamic information theoretic properties
[13]

• partial knowledge of plaintext/key bit
changesdoesnot revealany information
aboutthe ciphertextbit changes

The strict avalanchecriterion and information
theoreticproperties— propertiesS3, D1, and
D3 — can be consideredas measuresof a ci-
pher’srandomnessand,hence,it’s resistanceto
certainkindsof statisticalattacks.For example,
it canbe shownthat systemswhich do not sat-
isfy SACfor keybit changesmaybesusceptible
to key clusteringattacks[14]. The remaining
properties— S1,S2,D2 — arerequiredto en-
sureimmunity to clusteringattacks[15], linear
cryptanalysis[9], anddifferential cryptanalysis
[8]. In this paper,we focus our attentionon
the propertiesof SAC, nonlinearity,anddiffer-
ential characteristics.

���
. S-box Design

In this sectionwe discusshow S-boxesmay be
selectedto providethecryptographicproperties
of interest.

An important S-box property which is useful
in improving resistanceto differential crypt-
analysis (by decreasingdifferential character-
istic probabilities)is the rapid diffusion of bit
changes[16][17][12]. (A simpleexampleof S-
box diffusion is thepropertythata onebit input
changeresultsin two or more output changes.
We refer to this asfirst orderdiffusionandit is
interestingto note that the DES S-boxessat-
isfy this property. Higher order diffusion is
also possible[12].) As well, severalauthors
[18][19][20] have suggestedthat selectingS-
boxes with low probability XOR differential
pairsis usefulin ensuringlow probabilitychar-
acteristics.In [17], O’Connorillustratesthatfor
large  , themaximumXOR pairprobability, ��� ,
is expectedto be small, ����� 	��
���

�
.

1 2 3 4 5 6 7 8 9 10 11 12
Rounds

0.00

0.10

0.20

0.30

0.40

0.50

0.60

P
ro

ba
bi

lit
y 

of
 B

it 
C

ha
ng

e

n = 4, random S-boxes
n = 4, diffusive S-boxes
n = 8, random S-boxes
n = 8, diffusive S-boxes

Figure 2. ExperimentalSAC
for Different S-box Types

We proposeselectingS-boxesto satisfy both
diffusion and small XOR pair probabilities. In
considerationof O’Connor’s result, we have
found that this is most easilydonefor large S-
boxes.(OurexperimentshaveinvolvedS-boxes
for which %���� .) Wehavediscoveredthat �����
S-boxessatisfyinggooddiffusioncharacteristics
may be efficiently selectedusing a depth-first-
searchalgorithm. AmongtheS-boxesgenerated
with gooddiffusion,it waseasyto find S-boxes
which were highly nonlinear ( �������  ) and
satisfied ����� �! #" . Consider the following
example.
Example 1: For an 8–round SPN, using $&%'$ S-
boxes which satisfy first order diffusion with (*),+-�.

and /1032547678 , using reasonable assumptions
about the permutations, it can be shown [12] that the
minimum number of chosen plaintexts required for
differential cryptanalysis is (:93;34 8=< and the num-
ber of known plaintexts required for linear crypt-
analysis is (�>?;@4BA 8 . For a 64–bit block cipher
using a 40–bit key, this SPN provides a reasonable
level of security when compared to the 4 8C< key trials
required in an exhaustive key search.

We consider that an SPN is stronger in relation
to a criterion when fewer rounds are required
to reasonably achieve the criterion. Using this
definition of cryptographic strength, we have
discovered that

(1) large S-boxes strengthen an SPN’s SAC
properties and
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(2) strong diffusion characteristics strengthen
an SPN’s SAC properties (particularly for
small S-boxes)

These conclusions are supported analytically in
[21] and experimentally by the results presented
in Figure 2. The curves of Figure 2 illustrate
the probability of a ciphertext bit change as a
function of the number of rounds in the net-
work. The curves represent experimental data
obtained for 64–bit SPNs using optimal per-
mutations [21] and different sized S-boxes ran-
domly selected to satisfy first order diffusion.
The results presented are based on ����� randomly
selected plaintexts and, if SAC was perfectly
satisfied, we would expect the probability to be
1/2.

�
. S-box Interconnection

In this section, we consider improving the se-
curity of an SPN by replacing the permutation
between rounds of S-boxes with a suitable in-
vertible linear transformation. Consider, for ex-
ample, a linear transformation such as

���
	�����������
(1)

where �������������� ! " #�%$'& is the vector of input
bits to a round of S-boxes,

� �(�*) � ) �  " ! +) $ &
is the vector of bits from the previous round
output, , �-�.� �/�10 � �-�.�  " " 203$ �-�.� & is a diffu-
sive invertible linear transformation, and 4 is
a permutation such that no two outputs of an
S-box are connected to one S-box in the next
round. The transformation 065 �-�.� is given by

035 �-�.� �7)85:9
; (2)

where ;<�<) � 97) � 9= " ! +9>) $ .

Using such a transformation between rounds of
S-boxes is useful in promoting rapid diffusion
of bit changes. Let ?A@ represent the number of
bit changes in vector

�
and ?AB represent the
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Figure 3. Experimental SAC
for Linear Transformation

number of bit changes in vector C . It can be
shown [21] that

DFEHGJI DAK LMD+KONQP:NSRTVU D K LMD K�W�XAXZY (3)

Hence, a differential with a small, odd number
of bit changes is translated into a differential
with a large number of bit changes, whereas dif-
ferentials with even changes remain unaffected.
For example, if

T G>[F\ , a one bit change from
the output of round ] is translated into a 63 bit
change to the input of round ]_^=` .
It can be shown [12] that the diffusion of bit
changes by the linear transformation is useful
in decreasing the upper bound on the differ-
ential characteristic probability when S-boxes
are used which have no diffusion. As well, it
may be demonstrated [12] that using such a lin-
ear transformation, the effectivenss of a linear
approximation to the overall cipher can be de-
creased by requiring a larger number of S-box
linear approximations to be included in the sys-
tem linear expression.
Example 2: For an 8–round SPN, using acbda
S-boxes which satisfy second order diffusion withegfihkj�l

and monqpdrFsAt andusingthe linear trans-
formationof (1), it canbeshown[12] that u'viwkx�y-z
and u'{.w7x y�| . Note that, for a 64–bit SPN using
a 64–bit key, the level of securityis comparableto
DES (with a 56–bit key) which has u'v}w~x t�� andu'{gw~x t�� and is reasonablewhencomparedto thex�� t key trials requiredby exhaustivekey search.

4



Thediffusiveeffect of the linear transformation
of (1) is also useful in strengtheningthe SAC
propertiesof the SPN. Figure 3 illustratesthe
probabilityof a ciphertextbit changeasa func-
tion of the numberof networkroundsbasedon
�����

experimentalplaintexts for a 64–bit SPN
with different sizedS-boxes.

���
. Key Scheduling

The keying mechanismis an important aspect
of block cipher security. We recommendthe
applicationof a rotating key, that the sub-key
applied at each round is unique, and that all
key bits areappliedasearly as possiblein the
network.

It is interesting to note that the SPN struc-
ture consideredin this paperis immuneto the
related-keysattackpresentedin [22]. In DES-
like ciphersthe related-keysattackexploits the
half blockof ciphertextthatcomesdirectly from
the output of the previous round. In a basic
SPN, it is not possibleto examinethe input to
any round, therebypreventingany exploitation
of therelationshipbetweenthesub-keysof con-
secutiverounds.

A block cipher is said to have a “weak” key
if encryptionusingthe key is equivalentto de-
cryption using the samekey. That is, double
encryptionof the plaintext resultsin the orig-
inal plaintext. Since decryptiondoesnot use
the samesubstitutions(the inverseS-boxesare
used), the basic SPN structurehas the advan-
tagethat thereareno obviousweakkeys. The
keyingstructureitself hasno apparenttendency
to allow weak keys.

���	�
. Conclusions

In this paper,we havesuggestedthat the basic
SPN structure,motivatedby Shannonand in-
troducedby Feistel, is an elegantstructurefor
the designof secureblock ciphers. The ease

of randomly selectinglarge S-boxesthat sat-
isfy gooddiffusion andnonlinearityproperties,
combinedwith the simplicity of analyzingthe
networkstructure,supporttheuseof suchSPNs
as the basisfor secureblock ciphers.
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