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Abstract — In this paper we examinethe key clustering characteristics of a classof block
cryptosystemsreferred to as substitution-permutation networks or SPNs. Specifically, we
investigatethe relationship betweenthe property of key avalancheand the succesof a key
clustering attack. Further, we developan analytical model of the key avalanche property
and usethis to estimate a lower bound on the complexity of a key clustering attack as a
function of the number of rounds of substitutions.

I. Introduction

Substitution-permutationetworks(SPNs)evolvedfrom the work of Shannor{1] andFeistel[2]
and form the foundationfor many modernprivate key block cryptosystemsuchas DES [3],
FEAL [4], andLOKI [5]. Suchcryptosystem$elongto the classof productcipherswhich obtain
their cryptographicstrengthby iteratinga cryptographicoperationseveraltimes. The basicSPN
consistsof a numberof roundsof nonlinearsubsitutionsconnectedy bit positionpermutations.
The substitutionsare performedby dividing the block of bits into small sub-blocksandusinga
mappingstoredasa tablelookup andreferredto asan S-box. It hasbeenshownthatthis basic
SPNstructurecanbe usedto constructtipherswhich possesgoodcryptographigropertiessuch
ascompletenes§] andresistanceo differentialand linear cryptanalysiq7][8].

We shall considera general N-bit SPN as consistingof R roundsof n x n S-boxes. The
plaintextandciphertextare N-bit vectorsdenotedasP = [P, P, ... Py] andC = [C (3 ... Cy],
respectively. An S-boxin the networkis definedas an n-bit bijective mappings : X — Y
whereX = [X; X, ... X;,] andY = [V; V2 ... V,,]. We shall assumethat an S-box s keyed
by XORing n bits of key with the S-boxinput vector, X, beforethe substitutionoperationis
performed. Hence,the network is keyed from a 7-bit key K = [K; K3 ... K;] by XORing
N bits of the key with the network bits before eachround of substitutions. The methodfor
determiningwhere eachkey bit is appliedin the networkis referredto as the key scheduling
algorithm. Decryptionis performedby running the data“backwards”throughthe network (i.e.,
applying the key schedulingalgorithm in reverseand using the inverse S-boxes). A simple
exampleof an SPN cryptosystenwith N = 16, n = 4, and R = 4 is illustratedin Figure 1.
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Figure 1. Simple SPNwith N = 16, n = 4, and R = 4

IT. Key Clustering Attacks

A block cryptosystemis consideredwveak if keys which are closeto eachotherin Hamming
distanceresult in a number of correspondingciphertextswhich are also close in distance.
For example,considertwo keys, K' and K", for which wt(AK = K' @ K") is small where
wt(-) representshe Hamming weight of the specifiedargument, @ is the bit-wise XOR op-
erator, and A is usedto indicate the XOR differenceof the specfiedvector. The encryp-
tion of [ plaintexts, Py, Po, ..., P;, underthe two different keys resultsin [ ciphertextpairs,
(C},CY), (Ch, Ch), ..., (C), Cf ). If therearea numberof ciphertextsthat are closein distance
dueto the proximity of the two keys— for example,if E{wt(AC = C' & C")} is smallwhere
E{-} is the expectatioroperator— thenwe refer to the cryptosystermas having key clustering.

Key clusteringcan be exploited by a cryptanalystto improve upon an exhaustivekey search.
Such an attack requiresan appropriatenumber of known plaintextsto be able to determine
whethera key is closeto the correctkey. The cryptanalystproceedsy randomlyselectingand
testingkeysuntil akeyis foundthatis in the neighborhooaf thecorrectkey. Oncesuchakey is
found, the cryptanalystantestall keyswithin a suitabledistanceof this key until the correctkey
is established As an example,considera cryptosystenwith a key of 64-bits andwhich hasthe
propertythat keyswithin distance5 of the actualkey (about2?? keys)resultin ciphertextsthat
are (on average)close enoughto the actualciphertextsto be distinguishableusing only about
1000 known plaintext-ciphertexipairs. By randomly executingabout 264 /223 = 24! trials of



1000encryptionswe expectto be ableto discovera key in the neighorhoodi.e., within distance
5) of the actualkey. Testingall keysin the neighborhoodf this experimentakey (about2?

encryptions)will revealthe correctkey. As a result,the complexity of the key clusteringattack
is approximately(1000)2%! + 223 ~ 25! which is a significant improvementon the complexity
of about2%* requiredfor an exhaustivekey search.

III. Key Avalanche Property

Therelationshipbetweerthe key avalancheropertyof a cryptosystenandkey clusteringattacks
wasnotedin [9]. In this sectionwe developa modelfor the key avalanchegropertyof an SPN
as a function of the numberof roundsof substitutions.

(a) Definitions
Considerthe following definition of key avalanche.

Definition 1: A cryptosystem is said to satisfy the key avalanche criterion if each ciphertext bit
changes with a probability of 1/2 when a single key bit is changed.

This definition is analagous to the definition of the strict avalanche criterion (SAC) for a
cryptosystem [10] which refers to the probability of a ciphertext bit change given a one bit
plaintext change. The key avalanche criterion, of course, refers to key rather than plaintext
changes. As well, we can extend Definition 1 to consider the effect of changes involving more
than one key hit.

Definition 2: A cryptosystem is said to satisfy the extended key avalanche criterion order « if
each ciphertext bit changes with a probability of 1/2 when a set of « key bits are changed.

Let the key avalanche probability, pi,, represent the probability that a particular ciphertext bit
changes given a particular set of « key bit changes. Ideally, we desire a cryptosystem to exactly
satisfy the extended key avalanche criterion and p;, = 1/2 for any ciphertext bit and set of «
key bits. In redlity, cryptosystems will likely only approximately satisfy the criterion and the
key avalanche probability can be represented as

Pra = (1/2) — €. Q)

We refer to ¢ as the key avalanche error and note that the value of |¢| is typically very small.
A key clustering attack may be mounted against a cryptosystem which has poor extended key
avalanche characteristics (i.e., a large value for |¢|). The complexity of the key clustering attack
is essentially a product of the number of key trials required to find a key in the neighborhood of
the correct key and the number of known plaintexts required to determine that a test key isin
the neighborhood. Cryptosystems with large values of « and large corresponding values of |¢|
require few key tests before finding a key close to the actual key and few known plaintexts to
determine that a tested key is in the neighborhood of the actual key and, hence, are susceptible
to key clustering attacks.



(b) Network Model Assumptions

An analytical model for the strict avalanche characteristics of SPNs is presented in [11]. We
now extend the methodology to develop a model of the key avalanche characteristics for a one
bit key change, i.e., « = 1. The model approximates each S-box in the network as a stochastic
mapping and calculates the key avalanche probability for each round recursively assuming a
one hit key change.

We shall assume that the cryptosystem of interest is an N-bit block cryptosystem constructed
using n x n S-boxes such that N = n%. For example, a 64-bit SPN constructed using 8 x 8
S-boxes is a practica cryptosystem that satisfies these constraints. The network of Figure 1 is
also a simple illustration of such a network with N = 16 and n = 4.

In the model, each S-box behaves as a random variable selected uniformly from the set of
possible bijective mappings. Hence, an input change to an S-box results in a number of output
changes represented by the random variable D = wit(AY) where al possible values of AY
belonging to the set of 2" — 1 non-zero changes are equally likely. Therefore, the probability
distribution of D is given by

wazm:{&zﬁﬁg;? 2)
and
0 ,wt(AX) =0
PMD:dﬁz{#z Wi (AX) > 1 3)

for 1 < d < n. For ease of notation, we will represent Pp(D = d) by Pp(d).
We assume that the network uses a smple, effective permutation defined by bit ¢ of the output
of round r being connected to bit j of the input of round » + 1 such that

j=n-((i—1) mod n)+|(i—1)/n] + 1. (4)

This permutation belongsto the class of permutations identified Kam and Davida[6] as providing
provable completeness in networks for which N = nf. Ayoub [12] further identified this
permutation as belonging to a class of permutations cryptographically equivalent to Kam and
Davida's structure.

The cryptosystem that we shall consider in the model is keyed using - = N key bits which are
all applied at each round by XORing with the S-box input bits. We assume that the ordering
of the key bits at the input to each round can be represented as a random variable. Hence,
the model determines probabilities by averaging over all possible placements of the one bit key
change in each round.

1 The class of permutations identified by Ayoub are particularly useful for networks of an
arbitrary number of rounds because they are optimal (in the sense that they provide completeness
in the fewest number of contiguous rounds) and are easy to implement since they allow the use
of the same permutation for each round.



(c) Computation of Key Avalanche Property

The recursive model is based on finding the probability distribution of the number of S-boxesin
a round which have changes at their outputs given the probability distribution for the previous
round when a one bit key change is applied. From the probability distribution of the number
of S-boxes with output changes, it is possible to derive, under the assumptions of the model, a
probability distribution of the number of bit changes at the output of a particular round. From
this, the expected number of bit changes and, hence, the key avalanche probability are easily
determined.

Let W, represent the random variable corresponding to the number of bit changes (caused by
the complementation of one key bit) after round r, i.e.,

n

W, =) wt(AY,,) (5)

s=1

where AY ., is the output change of an S-box numbered s, 1 < s < n,inroundr, 1 <r < R.
Assuming symmetry in the location of a key bit change and the resulting output bit changes,
the key avalanche probability after » rounds corresponding to any ciphertext bit and key bit
change is given by the expected value of the number of bit changes divided by the block size,
i.e, pro = E{W,/N}. Therefore, we are interested in determining the probability distribution
P(W,). For notational convenience, we let P(W, = w,) = P(w,).

Let L, be arandom variable representing the number of S-boxes in round » which have changes
at their outputs, i.e, L, = #{s | wt(AY,s) # 0}. The probability distribution of bit changes
for the output of round » may be determined from

P(w;) = ) P(wy | 1) - P() (6)
l

7‘20

where the variable [, represents a particular value of the random variable L. Since the single
key bit change must cause a change in the output of one, and only one, of the first round S-boxes,
we can write the first round probability distribution of L, as

P(lell):{(l) 2; (7)

Consequently, the probability of /,;1 S-boxes in round » + 1 with output changes may be
determined recursively using

P(lp1) =Y P(lja | 1) P(L). 8
1,=0
In order to determine P(W,) and, subsequently, the expected number of bit changes, we must
therefore derive expressions for P(w, | [,) and P(l,41 | I).
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Consider first the determination of P(w, | ;). Let d = [d1 d2 ... d;,] where d; € {1,...,n} is
the number of output changes, wt(AY), of the i-th S-box of round r that has an output change.

Define
fo -]

to represent the values of d for which there are a total of w, bit changes at the output of round
r. The probability of w, output bit changes given that /, S-boxes have output bit changes is
given by

P(w, | ;) =) P(d) (10)
deA
where .
=[] Po(d). (11)
1=1

Consider now the determination of P(l.41|![;). Let ¢ be the number of S-boxes in round
r + 1 that do not have any input changes and let b be the number of S-boxes in round
r 4+ 1 that have input changes of one bit only, i.e, ¢ = #{s|wt(AX(,41)) =0} and
b= #{s | wt(AX(,41y,) =1}. In order to determine P(l,41 | ), we initially consider the
joint probability of & and t given [, S-boxes with output changes in round r, P(b,t | 1,).
Define the probability P(é | d) to be the probability that at least ¢ particular S-boxes in round
r 4+ 1 are not affected by input changes given that a specific d occurs. Further, let P(p | t,d)
represent the probability that at least p particular S-boxes have only one input bit changing given
that ¢ S-boxes do not have any input changes and a specific d occurs. Letting T = {1, ..., n}“,
the probability of interest is given by

P(bt|l;) =Y P(bt,d)

deT
=Y P(b|t,d)-P(t]d)- P(d)
deT
ot p— n—t (12)
PRI )" e e
> (5 () re - P

Equation (12) is derived by considering the application of the extension of the inclusion-exclusion
principle [13, p.271] in order to determine P(b | ¢,d) and P(t | d).
The probability P(d) is determined as in equation (11) and from [11], we have

P(§|d) = h<n6> (13)

ey



We shall determine the probability P(p |t,d) in the following manner. Without loss of
generality, consider that the last ¢ S-boxes in round » + 1 are the S-boxes which do not have
any input changes. Let V; represent the number of arrangements for the output bit changes of
round r satisfying d such that the last ¢+ S-boxes in round r + 1 have no input changes and the
remaining n — ¢t S-boxes each have one or more input bit changes. Hence, /V; can be determined
by computing the number of arrangements with exactly zero of the remaining n» — ¢t S-boxes
having no input changes. Using the inclusion-exclusion principle this is given by

Ntzg(—l)“c;t)ﬁ(” _;Z_— “>. (14)

Further, assume that the first p S-boxes in round r» + 1 have only one input change. Define
the vector h = [hy hy ... by ] where h; = {0, ..., p} represents the number of outputs of the :-th
S-box in round r with output changes which provide an input change to the first p S-boxes.
Hence, h € H where

Iy
H:{h|2hi:p}. (15)
=1

Let N, represent the number of arrangements of the S-boxes in round » which originate input
changes to the first p S-boxes. Hence

ly
N, =pl/ [H hi!] : (16)
=1

Lastly, define N, as the number of valid arrangements of bit changes such that the remaining
n —t— p Sboxesin round » + 1 have one or more bit changes at their input. Once again
applying the inclusion-exclusion principle, this is given by

n—t—p Iy
B Z n—t—p n—t—p—p
he p=0 (_1)u< a >11;[1< di = hi ) &

The probability P(p | t,d) can now be computed as

P(p|t,d) =Y N,N,/N;. (18)
heH

Using the probability P(b,t|/,) it is possible to compute P(l,4; | l,) by determining the
expected result given that a key bit change is randomly X ORed to one input bit of round r + 1. If
we ignore the effect of the key bit change, the number of S-boxes with output changesis ssimply
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givenas/,+1 = n—t. However, in determining the effect of the key bit change we must consider
the following three cases, their probability of occurrence, and their resulting implications:

1. Key change XORed with bit from S-box with no input changes (probability = ¢/n) =
Zr—i—l =n—1+ 1.

2. Key change XORed with bit from S-box with one input change (probability = b/n) = [, 41 =
n — t — 1 with probability 1/n, or [,11 = n — ¢ with probability (n — 1)/n.

3. Key change XORed with bit from S-box with more than one input change (probability =
L —t/n—">b/n) = l41 = n—1.

Hence, given P(b,t | [,), we can compute P(l,41 | {;) by:

t

3
|

| =~

P(lyyr=n—t+1[0,)=> — P(bt|l)
b=0 "
n—t b
Pl =n—t=1]4) =)~ Pbt|) (19)
b=0
n—t " b
Plloyr=n—t|lL)=>_ L= == ) Pt L),

b=0

Using this analysis, we have estimated the key avalanche probability for a 64—bit SPN and,
subsequently, determined the key avalanche error ¢ as a function of the number of rounds. The
results are listed in the second column of Table 1.

IV. Methods of Determining Close Keys

Using the key avalanche model presented in the previous section, we can now determine the
security of an SPN against exploitation of weak key avalanche for a key clustering attack as a
function of the number of rounds of substitutions. In this section we examine two methods for
determining that an experimental key is close to the actual key. Specifically, for each method
we determine the number of known plaintexts, A'p, required to reveal that two keys are close
to each other.

In developing a lower bound on the complexity of the key clustering attack, we only consider
the number of known plaintexts required to determine if an experimental key is close to the
actual key; we do not consider how many trials are required before we expect to pick a close
experimental key. Hence, although Ap gives an approximate lower bound on the complexity
of the key clustering attack, in practice, the complexity of the attack will be much higher than
Np since it will typically take a large number of trials before a selected key is close to the
actual key. In the approach we make the reasonable assumption that the magnitude of the key
avalanche error |¢| is maximized for « = 1.



(a) Ciphertext Correlation

In a cryptosystem with weak key avalanche, an obvious method for determining whether an
experimental key is close to the actual key is to search for correlation in the ciphertext output
bits. If there is a high enough degree of correlation it is likely that the experimental key is a
small Hamming distance from the actual key.

The problem may be considered to be a hypothesis testing problem with one hypothesis, Hj,
being that the test key comes from the neighborhood (i.e., for « = 1, within one bit) of the correct
key and the other hypothesis, H1, being that the key is not in the neighborhood of the correct key.
Let ¢ represent the value of the key avalanche error for x = 1 after R rounds of substitutions.
Assume that the probability that a ciphertext bit changes under hypothesis H, or H; is given by
po=1/2 —cp or p; = 1/2, respectively?. Let 7 represent the number of samples of ciphertext
bit changes required to test a key and, hence, the number of known plaintexts required to test
a key is given by N'p = n/N. The number of bit changes in n ciphertext bit change samples
follows the binomial distribution for each hypothesis. Therefore the expected number of bit
changes and variances are given by

2 2
Ho: po=n/2—ncr, oy = 0<1/4 - 63)
2
Hy: oy =n/2, oy =n/4.
Since ¢p is typically very small, ¢% < 1/4 and a(f ~ 012 = n/4. Therefore, let 02 = 5/4

represent the variance of both hypothesis distributions.

Since 7 is typically large, the binomial distribution for each hypothesis may be approximated as
a Gaussian distribution with the means, 1o and z1, and variance o>. For convenience, we shall
assume that the acceptable probability of error in selecting a hypothesis is the same for both Hj
and H,. Hence, considering the symmetry of the hypotheses, we require n large enough so that

(20)

fo + o &y — ao (21)

with the significance level o selected to provide a suitably small probability of error in the
hypothesis test where the probability of error is given by

V2

Hence, neg — /e ~ 0 and, consequently, i ~ (a/ep)”.
For an R round SPN, the number of known plaintexts required to test a key is, therefore,

NP%

Qo) = ;7(_/6_%2/2(&. (22

2
«

Ne%
where « is selected to provide a suitably small probability of error in the hypothesis test.
2 Note that p; = 1/2 implies that ¢ = 0 for x # 1. In practice, the key avalanche error ¢ for

different values of « # 1 would not necessarily be exactly zero. However, since the assumption
results in a lower bound on the security analysis, it is therefore suitable for our purposes.

(23)
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(b) Meet-in-the-Middle Correlation

Similarly to the ciphertext correlation approach we may consider identifying close keys by using
an experimental key to encrypt the known plaintexts for the first £2/2 rounds and to decrypt the
known ciphertexts for the last /2 rounds. This generates two values for a middle block of N
bits which can be checked for correlation. Let cp/, represent the value of ¢ for i/2 rounds.
If €r/o is large, then the two sets of middle bits are significantly correlated to the actual bits
and, therefore, are highly likely to be the same. We refer to the correlation of the two sets of
middle bits as meet-in-the-middle correlation. Note that it is not necessary or possible for the
cryptanalyst to know the actual middle bits.
Let pr/p = 1/2 — eg/o represent the probability that a middle bit is different than the actual
middle bit given that the experimental key selected is within distance one of the actual key.
Assume that the key avalanche probability is the same backwards and forwards. The probability
that two experimental middle bits are the same, pjs, is given by the probability that both bits
are correct or that both bits are incorrect. That is,

pyu = (Prs2)” + (1 —prp2)” (24)
=1/2+2¢}),.
As before, we define hypothesis H; to be that an experimental key is close to the actual key and
hypothesis H; to be that it is not. The expected number of ciphertext bit changes and variances
for each hypothesis are

2

Hy: pog=n/2 —2‘7]6%{/2, oy = n<1/4—46;§3/2>
2

Hy: o pn=n/2, oy =n/4

Using an analysis similar to the previous case of ciphertext correlation, for an R round SPN, we
may determine the number of known plaintexts required to test a key to be

(25)

Np ~ (26)

where « is selected to provide a suitably small probability of error in the hypothesis test.

V. Results

Clearly the advantage of using one form of the attack over the other depends on the relative
values of ep and eg/,. For an SPN with NV = 64 and a key size of = = 64, using the values
of the key avalanche error determined by the model of Section IIl and presented in the second
column of Table 1, we have calculated the number of known plaintexts required in order to test a
key to determine whether it is within distance one of the actual key as a function of the number
of substitution rounds. The results for both methods of determining close keys are presented
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Rounds Key Avalanche Ciphertext Correlation | Meet-in-Middle Correlation

R Er;or Ap Ap

1 4.37 x 1071 5 -

2 2.21 x 101 20 7

3 2.98 x 1072 1124 ]

4 1.59 x 103 3.98 x 10° 105

S 6.75 x 107> 2.20 x 108 -

6 2.55 x 1076 1.54 x 10M 3.16 x 10°
7 9.09 x 1078 1.21 x 10" -

8 3.12 x 107° 1.03 x 107 3.96 x 100
9 1.05 x 10~10 9.16 x 10'° -

10 3.45 x 10712 8.42 x 10%? 1.21 x 1016

Table 1. Resultsfor SPNwith N = 64, n = 8, anda = 8

in columns3 and 4 of Table1. The significancelevel for the hypothesistest was selectedto
be o = 8. Note thatit canbe shown[14, p.569] that Q(a) < 6—02/2/2 and, hence,although
increasingthe value of o doesnot significantly changethe value of Np, it doessignificantly
decreasehe likelihood of an errorin the hypothesistest.

Fromthetablewe candeterminethe numberof roundsrequiredby an SPNin orderto providea
level of securityagainstkey clusteringequivalentto exhaustivekey search.The resultssuggest
thatthe meet-in-the-middl@pproactrequiresfewerknown plaintextsto identify a closekey. For
both methodswhen R = 10, the numberof plaintextsrequiredto testa key satisfiesVp = 2°3.
Combining this boundon Ap with the numberof trials requiredto selecta key closeto the
actualkey resultsin a complexitymuchgreaterthanthe 264 key trials requiredin exhaustivekey
search.We concludethata 64—bit 10-roundSPNwith a 64—bitkey and8 x 8 S-boxess expected
to be unbreakablausing a key clusteringattackexploiting a key avalancheveakness.Further,
sincethe complexity of the attackis likely to be far greaterthan \V'p, our analysissuggestghat,
in practice,an 8—roundSPNwith Ap = 2%° will haveadequataesistanceo key clustering.

VI. Conclusion

We havepresentedain analysisof the relationshipbetweenthe key avalanchepropertyandkey
clustering. Using a stochasticmodel of the key avalancheproperty we are able to determine
the minimum numberof roundsrequiredfor an SPN to ensurethat a key clustering attack,
exploiting weak key avalanchewill fail.
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