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Abstract — In this paper we examinethe key clustering characteristics of a classof block
cryptosystemsreferred to as substitution-permutation networks or SPNs. Specifically, we
investigatethe relationship betweenthe property of key avalancheand the successof a key
clustering attack. Further, we developan analytical model of the key avalancheproperty
and use this to estimate a lower bound on the complexity of a key clustering attack as a
function of the number of rounds of substitutions.

�
. Introduction

Substitution-permutationnetworks(SPNs)evolvedfrom thework of Shannon[1] andFeistel[2]
and form the foundationfor many modernprivate key block cryptosystemssuchas DES [3],
FEAL [4], andLOKI [5]. Suchcryptosystemsbelongto theclassof productcipherswhichobtain
their cryptographicstrengthby iteratinga cryptographicoperationseveraltimes. ThebasicSPN
consistsof a numberof roundsof nonlinearsubsitutionsconnectedby bit positionpermutations.
The substitutionsareperformedby dividing the block of bits into small sub-blocksandusinga
mappingstoredasa tablelookup andreferredto asan S-box. It hasbeenshownthat this basic
SPNstructurecanbeusedto constructcipherswhich possessgoodcryptographicpropertiessuch
ascompleteness[6] andresistanceto differential and linear cryptanalysis[7][8].

We shall considera general � -bit SPN as consistingof � rounds of ����� S-boxes. The
plaintextandciphertextare � -bit vectorsdenotedas ���
	���
���������������� and ���
	���
���������������� ,
respectively.An S-box in the network is definedasan � -bit bijective mapping  !#"%$ &
where " �'	 ( 
 ( � �����)(+*�� and & �,	�- 
 - � �����.-/*�� . We shall assumethat an S-box is keyed
by XORing � bits of key with the S-box input vector, " , beforethe substitutionoperationis
performed. Hence,the network is keyed from a 0 -bit key 1 �2	43 
 3 � �����)3657� by XORing
� bits of the key with the network bits before eachround of substitutions. The methodfor
determiningwhereeachkey bit is appliedin the network is referredto as the key scheduling
algorithm. Decryptionis performedby runningthe data“backwards”throughthe network(i.e.,
applying the key schedulingalgorithm in reverseand using the inverseS-boxes). A simple
exampleof an SPNcryptosystemwith �8�:9<; , �#�>= , and ���?= is illustratedin Figure1.
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Figure 1. Simple SPN with � � ��� , ����� , and 	
���
�
�

. Key Clustering Attacks

A block cryptosystemis consideredweak if keys which are close to eachother in Hamming
distanceresult in a number of correspondingciphertextswhich are also close in distance.
For example,considertwo keys, ��� and ����� , for which ����������������� �����"! is small where
�#�$�&%'! representsthe Hamming weight of the specifiedargument, � is the bit-wise XOR op-
erator, and � is used to indicate the XOR differenceof the specfiedvector. The encryp-
tion of ( plaintexts, )+*-,.)0/1,3242524,.)76 , under the two different keys results in ( ciphertextpairs,
�98 � * ,$8 ���* !.,3�:8 � / ,$8 ���/ !.,3242524,<;=8 � 6 ,�8 ���61> . If therearea numberof ciphertextsthat areclosein distance
dueto theproximity of the two keys— for example,if ?A@<�����B�C8��D8 � �E8 ��� !.F is smallwhere
?�@G%4F is the expectationoperator— thenwe refer to the cryptosystemashavingkey clustering.

Key clusteringcan be exploitedby a cryptanalystto improve upon an exhaustivekey search.
Such an attack requiresan appropriatenumberof known plaintexts to be able to determine
whethera key is closeto the correctkey. The cryptanalystproceedsby randomlyselectingand
testingkeysuntil a key is foundthatis in theneighborhoodof thecorrectkey. Oncesuchakey is
found,thecryptanalystcantestall keyswithin a suitabledistanceof this key until thecorrectkey
is established.As anexample,considera cryptosystemwith a key of 64–bitsandwhich hasthe
propertythat keyswithin distance5 of the actualkey (about H /.I keys) result in ciphertextsthat
are (on average)closeenoughto the actualciphertextsto be distinguishableusing only about
�3JKJLJ known plaintext-ciphertextpairs. By randomly executingabout H-M:NLO<H /PI �QH<N * trials of
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1000encryptionswe expectto beableto discovera key in theneighorhood(i.e., within distance
5) of the actualkey. Testingall keys in the neighborhoodof this experimentalkey (about � ���
encryptions)will revealthe correctkey. As a result,the complexityof the key clusteringattack
is approximately� 9������	�
��� 
�
 � ����� ��� 
 which is a significant improvementon the complexity
of about ��� � requiredfor an exhaustivekey search.

� � �
. Key Avalanche Property

Therelationshipbetweenthekeyavalanchepropertyof a cryptosystemandkey clusteringattacks
wasnotedin [9]. In this sectionwe developa modelfor the key avalanchepropertyof an SPN
as a function of the numberof roundsof substitutions.

(a) Definitions
Considerthe following definition of key avalanche.

Definition 1: A cryptosystem is said to satisfy the key avalanche criterion if each ciphertext bit
changes with a probability of 1/2 when a single key bit is changed.

This definition is analagous to the definition of the strict avalanche criterion (SAC) for a
cryptosystem [10] which refers to the probability of a ciphertext bit change given a one bit
plaintext change. The key avalanche criterion, of course, refers to key rather than plaintext
changes. As well, we can extend Definition 1 to consider the effect of changes involving more
than one key bit.

Definition 2: A cryptosystem is said to satisfy the extended key avalanche criterion order � if
each ciphertext bit changes with a probability of 1/2 when a set of � key bits are changed.

Let the key avalanche probability, ����� , represent the probability that a particular ciphertext bit
changes given a particular set of � key bit changes. Ideally, we desire a cryptosystem to exactly
satisfy the extended key avalanche criterion and ������������ for any ciphertext bit and set of �
key bits. In reality, cryptosystems will likely only approximately satisfy the criterion and the
key avalanche probability can be represented as

� ��� �"!����# %$'&)(�* (1)

We refer to ( as the key avalanche error and note that the value of +,(-+ is typically very small.
A key clustering attack may be mounted against a cryptosystem which has poor extended key
avalanche characteristics (i.e., a large value for +.(-+ ). The complexity of the key clustering attack
is essentially a product of the number of key trials required to find a key in the neighborhood of
the correct key and the number of known plaintexts required to determine that a test key is in
the neighborhood. Cryptosystems with large values of � and large corresponding values of +/(-+
require few key tests before finding a key close to the actual key and few known plaintexts to
determine that a tested key is in the neighborhood of the actual key and, hence, are susceptible
to key clustering attacks.
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(b) Network Model Assumptions
An analytical model for the strict avalanche characteristics of SPNs is presented in [11]. We
now extend the methodology to develop a model of the key avalanche characteristics for a one
bit key change, i.e., � �"� . The model approximates each S-box in the network as a stochastic
mapping and calculates the key avalanche probability for each round recursively assuming a
one bit key change.

We shall assume that the cryptosystem of interest is an
�

-bit block cryptosystem constructed
using ����� S-boxes such that

� ����� . For example, a 64–bit SPN constructed using �	�
�
S-boxes is a practical cryptosystem that satisfies these constraints. The network of Figure 1 is
also a simple illustration of such a network with

� � ��� and � ��
 .
In the model, each S-box behaves as a random variable selected uniformly from the set of
possible bijective mappings. Hence, an input change to an S-box results in a number of output
changes represented by the random variable � ������!���� $ where all possible values of ���
belonging to the set of  ���& � non-zero changes are equally likely. Therefore, the probability
distribution of � is given by��� !�� � � $ � ! � "#����!$��% $ � ��&" "#����!$��% $(' � (2)

and � � !�� �*)	$ �,+ � "-����!���% $ �.�
!0/1 $2 � /0354 "-����!���% $6'"� (3)

for �879):79� . For ease of notation, we will represent
� � !�� � )%$ by

� � !$)%$ .
We assume that the network uses a simple, effective permutation defined by bit ; of the output
of round < being connected to bit = of the input of round <?> � such that= � �A@ !�!�; & ��$CBEDF)G� $5>IH !�; & ��$����KJL> ��* (4)

This permutation belongs to the class of permutations identified Kam and Davida [6] as providing
provable completeness in networks for which

� � �NM . Ayoub [12] further identified this
permutation as belonging to a class of permutations cryptographically equivalent to Kam and
Davida’s structure.1

The cryptosystem that we shall consider in the model is keyed using O � � key bits which are
all applied at each round by XORing with the S-box input bits. We assume that the ordering
of the key bits at the input to each round can be represented as a random variable. Hence,
the model determines probabilities by averaging over all possible placements of the one bit key
change in each round.P
1 The class of permutations identified by Ayoub are particularly useful for networks of an
arbitrary number of rounds because they are optimal (in the sense that they provide completeness
in the fewest number of contiguous rounds) and are easy to implement since they allow the use
of the same permutation for each round.
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(c) Computation of Key Avalanche Property
The recursive model is based on finding the probability distribution of the number of S-boxes in
a round which have changes at their outputs given the probability distribution for the previous
round when a one bit key change is applied. From the probability distribution of the number
of S-boxes with output changes, it is possible to derive, under the assumptions of the model, a
probability distribution of the number of bit changes at the output of a particular round. From
this, the expected number of bit changes and, hence, the key avalanche probability are easily
determined.

Let ��� represent the random variable corresponding to the number of bit changes (caused by
the complementation of one key bit) after round < , i.e.,

� � � �� ��� 4 � � !���� � � $ (5)

where ��� � � is the output change of an S-box numbered � , � 7���7 � , in round < , � 7 <�7
	 .
Assuming symmetry in the location of a key bit change and the resulting output bit changes,
the key avalanche probability after < rounds corresponding to any ciphertext bit and key bit
change is given by the expected value of the number of bit changes divided by the block size,
i.e., � � � ����
�� � � ��� . Therefore, we are interested in determining the probability distribution� !�� � $ . For notational convenience, we let

� !�� � � � � $�� � !�� � $ .
Let ��� be a random variable representing the number of S-boxes in round � which have changes
at their outputs, i.e., � ����� �"!�#"$�%'&)(+*,��-/.10��243 . The probability distribution of bit changes
for the output of round � may be determined from

5 &6$ � .7� 89:<;�=?> 5 &6$ � #A@ � .CB 5 &�@ � . (6)

where the variable @ � represents a particular value of the random variable � � . Since the single
key bit change must cause a change in the output of one, and only one, of the first round S-boxes,
we can write the first round probability distribution of � � as5 & �1D ��@ D .��FE,G H @IDJ� G2 H @ D 0� GLK (7)

Consequently, the probability of @M��NOD S-boxes in round � P G with output changes may be
determined recursively using

5 &�@ ��NOD .Q� 89: ; =?> 5 &�@ ��NOD #A@ � .CB 5 &�@ � . K (8)

In order to determine
5 &6R � . and, subsequently, the expected number of bit changes, we must

therefore derive expressions for
5 &)$ � #S@ � . and

5 &�@ ��NOD #A@ � . .
5



Consider first the determination of
5 &�$ � #S@ � . . Let � ����� D ��� K KMK � : ;�� where �
	�� � GLH K KMK H�
 3 is

the number of output changes, $1% &6( *�. , of the � -th S-box of round � that has an output change.
Define � � � ������

: ;9 	 = D � 	 ��$ ��� (9)

to represent the values of � for which there are a total of $ � bit changes at the output of round� . The probability of $ � output bit changes given that @ � S-boxes have output bit changes is
given by 5 &)$ � #A@ � .�� 9����� 5 & � . (10)

where 5 & � .7� : ;�	 = D 5�� &���	 . K (11)

Consider now the determination of
5 &�@ ��NOD #A@ � . . Let % be the number of S-boxes in round� P G that do not have any input changes and let � be the number of S-boxes in round� P G that have input changes of one bit only, i.e., % � � �A!�#L$ %"!�($# % ��NOD�&I-�' ��2)( and� � � �L!�#L$1%�!)(*# % ��NOD�&I- ' � G ( . In order to determine

5 &�@ ��NOD #A@ � . , we initially consider the
joint probability of � and % given @M� S-boxes with output changes in round � , 5 & � H %�#A@M�/. .
Define the probability

5 &,+�# � . to be the probability that at least + particular S-boxes in round� P G are not affected by input changes given that a specific � occurs. Further, let
5 &.-,# % H � .

represent the probability that at least - particular S-boxes have only one input bit changing given
that % S-boxes do not have any input changes and a specific � occurs. Letting / � � GLH K KMK H0
 3 : ; ,
the probability of interest is given by5 & � H % #L@ � .�� 9�1�"2 5 & � H % H � .� 9�1�32 5 & � #"% H � .CB 5 & % # � .CB 5 & � .

� 9�1�32 834)59 6 =87 &�9 G .
6
4 7�: - �<;>= 
 9�%- ? 5 &@-,#"% H � .

B 89 A = 5 &�9 G .
A
4)5 = + % ? : 
 + ; 5 &B+�# � .CB 5 & � . K

(12)

Equation (12) is derived by considering the application of the extension of the inclusion-exclusion
principle [13, p.271] in order to determine

5 & � #"% H � . and
5 & %�# � . .

The probability
5 & � . is determined as in equation (11) and from [11], we have5 &@+�# � .�� : ;�	 = D : 834

AC�D ;E : 8C0D ; K (13)
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We shall determine the probability
5 &@-,# % H � . in the following manner. Without loss of

generality, consider that the last % S-boxes in round � P G are the S-boxes which do not have
any input changes. Let � 5 represent the number of arrangements for the output bit changes of
round � satisfying � such that the last % S-boxes in round � P G have no input changes and the
remaining 
 9,% S-boxes each have one or more input bit changes. Hence, � 5 can be determined
by computing the number of arrangements with exactly zero of the remaining 
 9 % S-boxes
having no input changes. Using the inclusion-exclusion principle this is given by

� 5 � 834)59� =?> &�9 G . � = 
 9 %� ? : ;�	 = D = 
 9�% 9 �� 	 ? K (14)

Further, assume that the first - S-boxes in round � P G have only one input change. Define
the vector � � ��� D�� � K KMK � :<;B� where � 	 � �"2 H K K KMH -A3 represents the number of outputs of the � -th
S-box in round � with output changes which provide an input change to the first - S-boxes.
Hence, � ��� where

� � � � # : ;9 	 = D � 	 � -8� K (15)

Let � 6 represent the number of arrangements of the S-boxes in round � which originate input
changes to the first - S-boxes. Hence

� 6 � -
	�� 
 :<;�	 = D � 	 	�� K (16)

Lastly, define ��� as the number of valid arrangements of bit changes such that the remaining
 9 % 9 - S-boxes in round � P G have one or more bit changes at their input. Once again
applying the inclusion-exclusion principle, this is given by

� � � 834)5 4
6

9� =?> &�9 G . � = 
 9�% 9 -� ? : ;�	 = D = 
 9�% 9 - 9 ���	 9��1	 ? K (17)

The probability
5 &@-,#�% H � . can now be computed as5 &@-,#�% H � .7� 9�1��� � 6 ��� � � 5 K (18)

Using the probability
5 & � H % #S@M�/. it is possible to compute

5 &�@M��NOD #A@M�/. by determining the
expected result given that a key bit change is randomly XORed to one input bit of round � P G . If
we ignore the effect of the key bit change, the number of S-boxes with output changes is simply
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given as @ ��NOD � 
 9+% . However, in determining the effect of the key bit change we must consider
the following three cases, their probability of occurrence, and their resulting implications:

1. Key change XORed with bit from S-box with no input changes (probability = % � 
 ) �@M��NOD�� 
 9 % P G .
2. Key change XORed with bit from S-box with one input change (probability = � � 
 ) � @ ��NOD �
 9 %�9 G with probability G � 
 , or @ ��NOD � 
 9 % with probability & 
 9 G . � 
 .
3. Key change XORed with bit from S-box with more than one input change (probability =G 9 % � 
 9 � � 
 ) � @M��NOD,� 
 9 % .
Hence, given

5 & � H % #A@M�/. , we can compute
5 &�@M��NOD #A@M�/. by:

5 &�@M��NOD � 
 9 % P G #A@M�/.7� 834)59 7 =?> %� 
 B 5 & � H %�# @M�/.5 &�@ ��NOD � 
 9 %�9 G #A@ � .�� 834)59 7 =?> �� � B 5 & � H % #A@ � .5 &�@M��NOD � 
 9 % #S@M�/.7� 834)59 7 =?> = G 9 %� 
 9 �� � ? B 5 & � H %�#A@M�/. K
(19)

Using this analysis, we have estimated the key avalanche probability for a 64–bit SPN and,
subsequently, determined the key avalanche error � as a function of the number of rounds. The
results are listed in the second column of Table 1.

�	�
. Methods of Determining Close Keys

Using the key avalanche model presented in the previous section, we can now determine the
security of an SPN against exploitation of weak key avalanche for a key clustering attack as a
function of the number of rounds of substitutions. In this section we examine two methods for
determining that an experimental key is close to the actual key. Specifically, for each method
we determine the number of known plaintexts, 
�� , required to reveal that two keys are close
to each other.

In developing a lower bound on the complexity of the key clustering attack, we only consider
the number of known plaintexts required to determine if an experimental key is close to the
actual key; we do not consider how many trials are required before we expect to pick a close
experimental key. Hence, although 
 � gives an approximate lower bound on the complexity
of the key clustering attack, in practice, the complexity of the attack will be much higher than

 � since it will typically take a large number of trials before a selected key is close to the
actual key. In the approach we make the reasonable assumption that the magnitude of the key
avalanche error 
���
 is maximized for ����� .
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(a) Ciphertext Correlation
In a cryptosystem with weak key avalanche, an obvious method for determining whether an
experimental key is close to the actual key is to search for correlation in the ciphertext output
bits. If there is a high enough degree of correlation it is likely that the experimental key is a
small Hamming distance from the actual key.

The problem may be considered to be a hypothesis testing problem with one hypothesis, ��� ,
being that the test key comes from the neighborhood (i.e., for � � � , within one bit) of the correct
key and the other hypothesis, ��� , being that the key is not in the neighborhood of the correct key.

Let ��� represent the value of the key avalanche error for � � � after � rounds of substitutions.
Assume that the probability that a ciphertext bit changes under hypothesis � � or � � is given by� � � �
	���
 � � or � � � �
	�� , respectively2. Let � represent the number of samples of ciphertext
bit changes required to test a key and, hence, the number of known plaintexts required to test
a key is given by 
 � ����	�� . The number of bit changes in � ciphertext bit change samples
follows the binomial distribution for each hypothesis. Therefore the expected number of bit
changes and variances are given by� ��� ��� ����	���
�� �������! � �"��# ��	�$%
 �& �('� ��� �(� ����	��)� �  � ����	*$,+ (20)

Since ��� is typically very small, �.-�0/ �
	*$ and � -�21 � -� �3�4	5$ . Therefore, let �6- �7�4	5$
represent the variance of both hypothesis distributions.

Since � is typically large, the binomial distribution for each hypothesis may be approximated as
a Gaussian distribution with the means, �8� and � � , and variance �6- . For convenience, we shall
assume that the acceptable probability of error in selecting a hypothesis is the same for both � �
and �9� . Hence, considering the symmetry of the hypotheses, we require � large enough so that� �!:<;=� 1 � � 
�;>� (21)

with the significance level ; selected to provide a suitably small probability of error in the
hypothesis test where the probability of error is given by?�@ ;BA � �C D%E �&F GH IKJ�L8M  ON -.P)Q + (22)

Hence, � � � 
 DSR �); 1UT and, consequently, � 1 @ ;B	 � � A - .
For an � round SPN, the number of known plaintexts required to test a key is, therefore,


 � 1 ;=-V � � -� (23)

where ; is selected to provide a suitably small probability of error in the hypothesis test.W
2 Note that � � � �
	�� implies that � � T for �YX� � . In practice, the key avalanche error � for
different values of �ZX� � would not necessarily be exactly zero. However, since the assumption
results in a lower bound on the security analysis, it is therefore suitable for our purposes.
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(b) Meet-in-the-Middle Correlation
Similarly to the ciphertext correlation approach we may consider identifying close keys by using
an experimental key to encrypt the known plaintexts for the first ��	�� rounds and to decrypt the
known ciphertexts for the last �%	�� rounds. This generates two values for a middle block of �
bits which can be checked for correlation. Let � � N - represent the value of � for ��	�� rounds.
If � � N - is large, then the two sets of middle bits are significantly correlated to the actual bits
and, therefore, are highly likely to be the same. We refer to the correlation of the two sets of
middle bits as meet-in-the-middle correlation. Note that it is not necessary or possible for the
cryptanalyst to know the actual middle bits.

Let � � N - � ��	�� 
 � � N - represent the probability that a middle bit is different than the actual
middle bit given that the experimental key selected is within distance one of the actual key.
Assume that the key avalanche probability is the same backwards and forwards. The probability
that two experimental middle bits are the same, � � , is given by the probability that both bits
are correct or that both bits are incorrect. That is,� � � � � � N -�� - : � � 
 � � N -�� -

� �
	�� :<� � -� N - + (24)

As before, we define hypothesis � � to be that an experimental key is close to the actual key and
hypothesis � � to be that it is not. The expected number of ciphertext bit changes and variances
for each hypothesis are��� � � � ���4	���
 �&� � -� N - � �  � � � # �
	5$ 
 $ ���� N - '�9� � � � ����	��)� �  � �"��	*$ (25)

Using an analysis similar to the previous case of ciphertext correlation, for an � round SPN, we
may determine the number of known plaintexts required to test a key to be


 � 1 ;=-� $ � � � � N - (26)

where ; is selected to provide a suitably small probability of error in the hypothesis test.

	
. Results

Clearly the advantage of using one form of the attack over the other depends on the relative
values of � � and � � N - . For an SPN with � ��

$ and a key size of � �


$ , using the values
of the key avalanche error determined by the model of Section III and presented in the second
column of Table 1, we have calculated the number of known plaintexts required in order to test a
key to determine whether it is within distance one of the actual key as a function of the number
of substitution rounds. The results for both methods of determining close keys are presented
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� � � ��
Rounds� � Key Avalanche

Error
� � Ciphertext Correlation


 � � Meet-in-Middle Correlation

 � �	 
 � �


1 � $ +������ � T L � � � � - �� � � ��
2 � �)+ � ��� � T L �  � T ! � "# $ % &'
3 ( �)+�)+*,� � T L - - �	�5�
$ . - /0 1 2 34
4 5 � + � ),� � T L76 8 � +9)+*,� � T;: < � T � => ? @ AB
5 C 
)+D� � � � T L : E � + � T � � T;F G - HI J K LM
6 N �)+ �+� � � T L7O P

�&+ � $,� � T � � Q � + ��
,� � TR: ST U V WX
7 Y ))+ T ),� � T L F Z �&+ � �[� � T � � \ - ]^ _ ` ab
8 c �)+ �*�,� � T L7d e

�&+ T �f� � T �hg i � +�) 
f� � T � � jk l m no
9 p � + T � � � T L � � q ) + ��
f� � T � d r

- st u v wx
10 y �)+ $ � � � T L � - z * + $ �f� � T - - { �&+ � �[� � T � O |} ~ � �

Table 1. Resultsfor SPN with � ���+� , ����� , and �����
in columns3 and 4 of Table 1. The significancelevel for the hypothesistest was selectedto
be ����� . Note that it can be shown[14, p.569] that �f�����[�������+����� �R¡ and,hence,although
increasingthe value of � doesnot significantly changethe value of ¢¤£ , it doessignificantly
decreasethe likelihood of an error in the hypothesistest.

Fromthetablewe candeterminethenumberof roundsrequiredby anSPNin orderto providea
level of securityagainstkey clusteringequivalentto exhaustivekey search.The resultssuggest
thatthemeet-in-the-middleapproachrequiresfewerknownplaintextsto identify a closekey. For
bothmethods,when ¥¦�¦§ ¨ , the numberof plaintextsrequiredto testa key satisfies¢ £ª© ¡+«h¬ .
Combining this boundon ¢ £ with the numberof trials requiredto selecta key close to the
actualkey resultsin a complexitymuchgreaterthanthe ¡®­°¯ key trials requiredin exhaustivekey
search.Weconcludethata64–bit10–roundSPNwith a64–bitkey and �²±²� S-boxesis expected
to be unbreakableusinga key clusteringattackexploiting a key avalancheweakness.Further,
sincethecomplexityof the attackis likely to be far greaterthan ¢ £ , our analysissuggeststhat,
in practice,an 8–roundSPNwith ¢¤£ © ¡ ¬�« will haveadequateresistanceto key clustering.³µ´

. Conclusion

We havepresentedan analysisof the relationshipbetweenthe key avalanchepropertyandkey
clustering. Using a stochasticmodel of the key avalanchepropertywe are able to determine
the minimum numberof roundsrequiredfor an SPN to ensurethat a key clusteringattack,
exploiting weak key avalanche,will fail.

11



References

[1] C. E. Shannon,“Communicationtheoryof secrecysystems,”Bell SystemTechnicalJournal,
vol. 28, pp. 656–715,1949.

[2] H. Feistel, “Cryptography and computerprivacy,” Scientific American, vol. 228, no. 5,
pp. 15–23, 1973.

[3] National_Bureau_of_Standards,“Data Encryption Standard(DES),” Federal Information
ProcessingStandard Publication 46, 1977.

[4] A. Shimizu and S. Miyaguchi, “Fast data enciphermentalgorithm: FEAL,” Advancesin
Cryptology:Proceedingsof EUROCRYPT’87, Springer-Verlag,Berlin, pp. 267–278,1988.

[5] L. Brown, J. Pieprzyk,andJ. Seberry,“LOKI - a cryptographicprimitive for authentication
andsecrecyapplications,”Advancesin Cryptology:Proceedingsof AUSCRYPT’90, Springer-
Verlag, Berlin, pp. 229–236,1990.

[6] J. B. Kam and G. I. Davida, “A structureddesignof substitution-permutationencryption
networks,” IEEE Transactionson Computers, vol. 28, no. 10, pp. 747–753,1979.

[7] L. J. O’Connor, “On the distributionof characteristicsin bijective mappings,”Advancesin
Cryptology:Proceedingsof EUROCRYPT’93, Springer-Verlag,Berlin, pp. 360–370,1994.

[8] H. M. HeysandS. E. Tavares,“The designof productciphersresistantto differential and
linear cryptanalysis,”presentedat CRYPTO ’93, SantaBarbara,Calif., Aug. 1993.

[9] W. Diffie andM. E. Hellman,“Privacy andauthentication:An introductionto cryptography,”
Proceedingsof the IEEE, vol. 67, no. 3, pp. 397–427,1979.

[10]A. F. Websterand S. E. Tavares,“On the designof S-boxes,”Advancesin Cryptology:
Proceedingsof CRYPTO ’85, Springer-Verlag,Berlin, pp. 523–534,1986.

[11]H. M. Heys and S. E. Tavares,“Avalanchecharacteristicsof a classof product ciphers,”
tech. rep.,Departmentof ElectricalEngineering,Queen’sUniversity, Aug. 30, 1993.

[12]F. Ayoub, “The designof completeencryptionnetworksusingcryptographicallyequivalent
permutations,”Computersand Security, vol. 2, pp. 261–267,1982.

[13]F. S. Roberts,AppliedCombinatorics. EnglewoodClif fs, N.J.: Prentice-Hall,1984.

[14]S. S. Haykin, Digital Communications. New York: Wiley, 1988.

12


