
FPGA IMPLEMENTATION OF MD5 HASH ALGORITHM

Janaka Deepakumara, Howard M. Heys and R. Venkatesan
Faculty of Engineering and Applied Science

Memorial University of Newfoundland
St.John’s, NF, Canada A1B 3X5

Email:{janaka,howard,venky}@engr.mun.ca

ABSTRACT

In information security, message authentication is an
essential technique to verify that received messages
come from the alleged source and have not been
altered. A key element of authentication schemes is the
use of a message authentication code (MAC). One
technique to produce a MAC is based on using a hash
function and is referred to as an HMAC. Message
Digest 5 (MD5) is one of the algorithms, which has been
specified for use in Internet Protocol Security (IPSEC),
as the basis for an HMAC. The input message may be
arbitrarily large and is processed in 512-bit blocks by
executing 64 steps involving the manipulation of 128-bit
blocks. There is an increasing interest in high-speed
cryptographic accelerators for IPSEC applications such
as Virtual Private Networks. As we shall show in the
paper, it is reasonable to construct cryptographic
accelerators using hardware implementations of
HMACs based on a hash algorithm such as MD5. Two
different architectures, iterative and full loop unrolling,
of MD5 have been implemented using Field
Programmable Gate Arrays (FPGAs). The performance
of these implementations is discussed.

1. INTRODUCTION

Data integrity assurance and data origin authentication
are essential security services in financial transactions,
electronic commerce, electronic mail, software
distribution, data storage and so on. The broadest
definition of authentication within computing systems
encompasses identity verification, message origin
authentication and message content authentication. In
IPSEC, the technique of cryptographic hash functions is
utilized to achieve these security services.

 1.1 Hash Functions

Hash functions compress a string of arbitrary length to a
string of fixed length. They provide a unique
relationship between the input and the hash value and
hence replace the authenticity of a large amount of
information (message) by the authenticity of a much
smaller hash value (authenticator)[1]. In recent years

there has been an increased interest in developing a
Message Authentication Code (MAC) derived from a
hash code. Among the many reasons behind this are that
cryptographic hash functions such as MD5 and SHA-1
generally execute faster in software than symmetric
block ciphers such as DES. The software for hash
functions is widely available and there are no export
restrictions from the United States or other countries for
cryptographic hash functions. Hence, there are many
applications of MD5, SHA-1 and other hash functions to
generate MACs. The method to implement the MAC for
IP security has been chosen as hash-based MAC or
HMAC, which uses an existing hash function in
conjunction with a secret key. The HMAC algorithm is
specified for an arbitrary FIPS-approved cryptographic
hash function. With minor modification, HMAC can
easily replace one hash function with another [2].

1.2 Message Digest 5 (MD5) Algorithm

MD5 [3] is a message digest algorithm developed by
Ron Rivest at MIT. It is basically a secure version of his
previous algorithm, MD4 which is a little faster than
MD5. This has been the most widely used secure hash
algorithm particularly in Internet-standard message
authentication. The algorithm takes as input a message
of arbitrary length and produces as output a 128-bit
message digest of the input. This is mainly intended for
digital signature applications where a large file must be
compressed in a secure manner before being encrypted
with a private (secret) key under a public key
cryptosystem.

Assume we have an arbitrarily large message as input
and that we wish to find its message digest. The
processing involves the following steps.

(1) Padding
The message is padded to ensure that its length in bits
plus 64 is divisible by 512. That is, its length is
congruent to 448 modulo 512. Padding is always
performed even if the length of the message is already
congruent to 448 modulo 512. Padding consists of a
single 1-bit followed by the necessary number of 0-bits.

(2) Appending length
A 64-bit binary representation of the original length of
the message is concatenated to the result of step (1).
(Least significant byte first). The expanded message at
this level will exactly be a multiple of 512-bits. Let the
expanded message be represented as a sequence of L
512-bit blocks Y0, Y1,..,Yq,..,YL-1 as shown in Figure 1 [4].
Note that in the figure, IV and CV represent initial value
and chaining variable respectively.

Figure 1. Generation of message digest

(3) Initialize the MD buffer
The variables IV and CV are represented by a four–word
buffer (ABCD) used to compute the message digest.
Here each A, B, C, D is a 32-bit register and they are
initialized as IV to the following values in hexadecimal.
Low-order bytes are put first.

 Word A: 01 23 45 67
 Word B: 89 AB CD EF
 Word C: FE DC BA 98
 Word D: 76 54 32 10

(4) Process message in 16-word blocks
This is the heart of the algorithm, which includes four
“rounds” of processing. It is represented by HMD5 in
Figure 1 and its logic is given in Figure 2. The four
rounds have similar structure but each uses different
auxiliary functions F, G, H and I.

where ∨, ∧, ⊕ and ¯ represent the logical OR, AND,
XOR and NOT operations, respectively. Each round
consists of 16 steps and each step uses a 64-element
table T [1 ... 64] constructed from the sine function. Let
T[i] denote the i-th element of the table, which is equal

to the integer part of 232 times abs(sin(i)), where i is in
radians. Each round also takes as input the current 512-
bit block (Yq) and the 128-bit chaining variable (CVq).
An array X of 32-bit words holds the current 512-bit Yq.
For the first round the words are used in their original
order. The following permutations of the words are
defined for rounds 2 through 4:

ρ2(i) = (1+ 5i) mod 16
ρ3(i) = (5+ 3i) mod 16

 ρ4(i) = 7i mod 16

Figure 2. Compression function HMD5

The output of the fourth round is added to the input of
the first round (CVq) to produce CVq+1.

(5) Output
After all L 512-bit blocks have been processed, the
output from Lth stage is the 128-bit message digest.
Figure 3 shows the operations involved in a single step.
The additions are modulo 232. Four different circular
shift amounts (s) are used each round and are different
from round to round. Each step is of the following form
[4]:

Figure 3. Operations in a single step of MD5

Y0 Y1 Yq Y L-1

512

L x 512 bits Padding (1-512 bits)

Message 100…. Length

512 512

CV L-1

128

CV q

HMD5

128 128

HMD5

128

HMD5 HMD5

128-bit Digest

512

IV

)(),,(

),,(

)()(),,(

)()(),,(

ZXYZYXI

ZYXZYXH

ZYZXZYXG

YXYXZYXF

∨⊕=

⊕⊕=

∧∨∧=

∧∨∧=

CV q+1

F, T[1 … 16], X[i] 16 steps

G, T[17 … 32], X[ρ2i] 16 steps

H, T[33 … 48], X[ρ3i] 16 steps

I, T[49 … 64], X[ρ4i] 16 steps

512

CVq

128

128

A B C D

Yq

A B C D

 + + + +

X[k]

T[i]

A B C D

A B C D

+

+

+

+

<< S

F/G/H/I
 Function

1.3 FPGA Implementation

Re-configurable devices such as FPGAs are a highly
attractive option for hardware implementations as they
provide the flexibility of dynamic system evolution as
well as the ability to easily implement a broad range of
algorithms.

Most hash functions are targeted at software
implementations. The advantages of software
implementations are ease of use, ease of upgrading,
portability and flexibility. However a hardware
implementation has more physical security by nature, as
it can not easily be modified by an attacker. On the other
hand the speed of a software implementation is
restricted to the speed of the computing platform and
there are vulnerabilities for viruses and other
complications due to system failures.

The main features of hash functions are the relatively
easy computations making both software and hardware
implementations practical. FPGAs offer many
advantages over Application Specific Integrated Circuits
(ASICs). Short time to market, high flexibility including
capability for frequent modifications of hardware, low
development cost and low cost of the final product are
some. FPGAs have the potential for fast, low cost,
reprogramming and experimental testing of a large
number of various architectures and revised versions of
the same architecture [5]. For this implementation the
target device was selected as the Xilinx Virtex FPGA
family. The Virtex FPGA delivers high performance,
high speed, and high capacity programmable logic
solutions. The abundance of routing resources permits
the Virtex family to accommodate large and complex
designs. The Virtex gate array comprises some main
configurable elements: Configurable Logic Blocks
(CLBs), Input /Output Blocks (IOBs), look-up tables
and block select RAMs. Each CLB contains four logic
cells organized in two similar slices [6]. The top-level
design was described in VHDL and the available Xilinx
core generator modules were utilized wherever
applicable. Xilinx Alliance 3.1i and Foundation 3.1i
tools were used for synthesizing and implementation.
VSS and Foundation EDIF simulators were used for
functional and timing simulations.

2. MD5 IMPLEMENTATION

MD5 algorithm is a block-chained hashing algorithm.
The hash for a block depends on both the block data and
the hash of its preceding block. As a result, blocks can
not be hashed in parallel. Each step consists of four
additions, three component logical operations, two table
lookups and one rotation. The tree of operations can be
optimized by performing operations, which involve
items not dependent on the previous step, early.
According to Figure 3, the item that depends on the
previous step is word B and hence the result of logical
operation has a considerable delay. The optimized tree
of operation (assuming each operation takes one unit
time) will be as given in Figure 4. According to this one
time unit step can be reduced [7].

Figure 4. Optimized operation tree

The following architectural options were investigated
and implemented:
• iterative looping (Iterate_MD5)
• full loop unrolling (Fullun_MD5)
Both architectures were implemented at behavioral level
in VHDL, simulated, synthesized and functionally
simulated. After verifying the functionality, the design
underwent the translation, mapping, placing and routing
(PAR), timing and configuration stages of the flow
engine. The functionality of the PAR implementations is
then re-simulated with back-annotated timing using the
same test vectors used in functional simulation,
verifying that the implementation of the design is
successful. In both designs, it is assumed that the first
two aspects of the algorithm have already been
performed and the input of message blocks can be
controlled according to the state machine states.

X T

+A

+

DCB *

Logical
operation

+

<<

B *

 +

B **

B * - Value depends on
previous step

B**- Value that next step
depends on

CD

BC

sITKXDCBFuncABB

DA

←

←

<<++++←

←

)])[][),,(((

2.1 Iterative Looping Architecture
.
By implementing a generic step of the MD5 algorithm,
a looping architecture with 64 iterations would seem to
provide the greatest area optimized solution. The block
diagram of the iterative design is shown in Figure 5.

Figure 5. Block diagram of MD5 iterative
design (Iterate_MD5).

A few additional multiplexers and a barrel shifter have
to be used to perform the selection of the round function
and the variable shifting in each round. The state
machine has 68 states including three states required for
initializing and loading the very first block to the core.
In subsequent block operations the state machine
utilizes 65 states. The main feature of this design is the
loading of message blocks in parallel with computation.
The two RAMs can be utilized to load the next block
while the present block is being used in computation.
This eliminates the loading time. The 512-bit message
block is loaded to the core using a 32-bit bus. The
“Reset_state” signal initiates the state machine and the
counters. Then with the “Start” signal the function gets
started. The initial vectors are loaded in parallel to the
input register and to a buffer. The initial vectors as well
as the chaining variables are kept in this buffer until the
64th step to get added with the last result to form the
chaining variable for the next block. Initially the first
block is loaded to the XRAM1 using the addresses
given by the X_in counter. After that the state machine
starts to provide addresses for reading of XRAM1.
Using the first 16 addresses provided by the state
machine, the next block is written to XRAM2. After the
64th step, XRAM2 is read. During the first 16 steps of
processing the second block, the third block is written to
XRAM1. This reading and writing of RAMs alternates
in every 64 clock cycles. Subsequent blocks utilize the
previous chaining variable as their initial values. The
generic step is shown in Figure 6.

Figure 6. MD5 iterative core

CLK

Rmcnt_reset
 &
 Rmcnt_enReset_state

MD5
Iterative

Core

X_sel

Shift_amnt
en1
en2

MD5 ITERATIVE
State MachineX_in

counter

X_count

Count_done

WE1
XEN1

T_addr

Func_sel
CV_sel

X_in

X_sel

CLK

32

32

Count_en

WE2
XEN2

Ram
Select

Counter

CLK

(Digest)

Load_done

X_addr

CV_sel
en1

F
G
H
I

T Rom

T_addr

IV
A_buf B_buf C_buf D_buf

Shift_amnt

CV

3232 32

32

X_addr
X_in

32

128
128

Func_sel

Load_done

A_buf B_buf C_buf D_buf

Figure 1 (a)A_out B_out C_out D_out

32 32 32

32

WE1
XEN1

128

2

6

2

WE2 XEN2

X_addr
4

Ram_sel
32

Mux1

Mux3

IV Rom

X RAM1

X RAM2

en2

<<<

Mux 2

32

DA B C

2.2 Full Loop Unrolling Architecture

The full loop unrolled architecture has a 64-step
combinational logic core as shown in Figure 7. In this
architecture all the elements of each step are
implemented as combinational logic. The barrel shifter
has been removed by direct wiring of appropriate shifted
bits in each step.

Figure 7 MD5 full loop-unrolling core

.

The use of double buffering (XX and YY) eliminates
the loading time from the critical timing path. The next
block is loaded during the computation of the present
block. IV ROM provides the initialization vector for the
first step. The “load_done” signal makes the
initialization vector and the chaining variables available
for the first block and for the subsequent blocks
respectively. During computation of the digest for a
block, the next block is stored in buffer YY and after the
computation the “YY2XX” signal gets high and hence
XX obtains the new input for the next computation. The
block diagram of the complete design is given in Figure
8. In addition to the core, the other main components are
the state machine which has four states, X_in counter
used for loading the blocks to the core and Wait counter
utilized to count the number of cycles for the
combinational logic delay of the computation.

Similar to the iterative design, the “Reset_State” signal
initiates the state machine and the X_in counter. The
initialization vectors are taken into the register CV_Reg.
With the “Start” signal, the initial block is loaded to
buffer YY and right after that “YY2XX” signal loads it
to buffer XX and the computation is commenced.
During computation, the next block is loaded to buffer
YY. When all the blocks in the message are processed,
“en2” signal makes the digest available at the output of
register, Digest_Reg.

CLK

Start

MD5
Full Loop
Unrolling

CoreB_out

A_out

C_out

D_out

Load_done

X_in_count

CV_sel

X_in counter

Full loop unrolling
State machine

Init

Count_done

X_in 32

(Message)

(Digest)

YY_en

Count_en

YY2XX

Reset_State

Wait_counter

Wait_reset

Wait_done

Wait_end

en2

32

32

32
32

4

Figure 8. Block diagram of full-loop-unrolling design (Fullun-MD5).

D_out

64 –Steps

IV

X_in
(Message)

CV_sel

YY_en YY2XX

Load_done

A_out B_out C_out

CV

en2

32

IV
ROM

CV Reg

Digest Reg

YY XX

X_in_Count

3. PERFORMANCE EVALUATION

Both designs were synthesized and placed and routed on
the Virtex V1000FG680–6 target device with clock rate
up to 200 MHz.

In the case of the iterative design, the utilization of the
external IOBs was 161 out of 512 (31%) and the block
RAM usage was 2 out of 32 (6%). The number of slices
used for this architecture was significantly low. It was
880 out of 12288 (7%) and from this the barrel shifter
utilized 288 (2%). There is 4% utilization of three state
buffers (TBUFs). According to the timing simulation
the maximum frequency of the design was 21 MHz.
Hence, the expected throughput is (512 x 21M)/65 =
165 Mbps.

For the full-loop-unrolled design, the utilization of
slices was 4763 out of 12288 (38%). The utilization of
external IOBs was similar to that of the iterative design.
The number of TBUFs has been reduced to 2%. Timing
simulations show that the maximum delay for a
computation of a chaining variable is 1444.75 ns. The
controller can run at 71.4 MHz. Since there is no delay
for loading except for the first block, the expected
throughput is (512)/(1.445 µs)= 354 Mbps

The summary is given in Table 1.

Architecture % Slices
utilization

Frequency Throughput

Iterative 6 % 21 MHz 165 Mbit/s

Full loop
unrolling

38% 71.4 MHz 354 Mbit/s

Table 1.

According to the performance measurements on
software implementations given in [7], the throughput
has been less than 100 Mbps. DEC Alpha (190 MHz)
has given a throughput of 87-100 Mbps.

3. CONCLUSION

The significance of the hardware implementation of the
MD5 algorithm has been examined. Two architectures
have been studied for both area utilization and speed
with FPGAs as the target device. It is clear that both
architectures can be easily fitted to a single device.
Although the inherent nature of the MD5 structure does
not allow parallel hash operations of blocks, hardware
implementations can obtain a significant throughput to
cater to some of currently available IP bandwidths.

FPGA implementations would therefore be suitable as
components in cryptographic accelerators.

The device utilization of iterative design is significantly
small. The unused resources can be utilized to
implement several cores in the same device and thereby
processing several messages in parallel. This would be
an attractive feature for a cryptographic accelerator.
Although the utilization was fairly high, two full loop-
unrolling designs could be fitted into a single FPGA
device. Hence there is a possibility of processing two
messages in parallel. As well, for both architectures
there is a possibility of implementing the complete
HMAC by implementing other necessary HMAC
components, utilizing the unused resources of the
FPGA.

The obtained results can be further improved by using
the latest FPGA devices such as Virtex II family. The
Virtex devices provide better performance than the
previous generation of FPGAs achieving synchronous
system clock rates of 200 MHz [6]. The latest devices
however can provide more than 400 MHz clock speeds
as well as more resources. Further, using timing
constraints it is likely that the delays in the critical paths
can be reduced.

REFERENCES

[1]. B. Preneel, “Cryptographic Primitives for
Information Authentication- State of the Art in
Applied Cryptography”, Lecture Notes in Computer
Science vol. 1528, Springer-Verlag Berlin
Heidelberg NY 1998.

[2]. National Institute of Standards and Technology,
The Keyed-Hash Message Authentication Code
(HMAC), Federal Information Processing Standards
Publication # HMAC, 2001.

[3]. R. Rivest, The MD5 Message-Digest Algorithm,
RFC 1321, MIT LCS & RSA Data Security, Inc.,
April 1992.

[4]. W. Stallings, Cryptography and Network Security,
Second edition. Prentice Hall, 1997.

[5]. K. Gaj and P. Chodowiec, “Comparison of the
Hardware Performance of the AES Candidates
Using Configurable Hardware”,
http://csrc.nist.gov/encryption/aes/round2/.

[6]. Xilinx Inc., Virtex 2.5V Field Programmable Gate
Arrays, 2000.

[7]. J. Touch, Report on MD5 Performance, RFC 1810,
June 1995.

