Security considerations for Galois (non-dual) RLWE families

Hao Chen*, Kristin Lauter, Katherine E. Stange

SAC conference, St John's, Canada

August 11, 2016

Microsoft[®]

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ ● ○ へ ○ 1/19

1 Background: Ring-LWE

2 Improved attack using cosets

Infinite family of vulnerable instances (for narrow errors)

Impossibility of our attack for 2-power cyclotomic fields

<□> < @> < E> < E> E の Q @ 2/19

The (non-dual and discrete) Ring-LWE problem

Ring-LWE problem: introduced by Lyubashevskey, Peikert and Regev in 2010 ([LPR]).

The (non-dual and discrete) Ring-LWE problem

Ring-LWE problem: introduced by Lyubashevskey, Peikert and Regev in 2010 ([LPR]).

- $R = \mathbb{Z}[x]/(f(x))$, f(x) a degree *n* polynomial.
- q an integer (the modulus), $R_q = \mathbb{Z}_q[x]/(f(x))$.
- a secret polynomial $s \in R_q$.
- an error distribution χ over R.
- a sample is

$$(a, b = as + e) \in R_q \times R_q,$$

<□> < @ > < E > < E > E のQ @ 3/19

where $a \in R_q$ uniformly, and $e \leftarrow \chi$.

The (non-dual and discrete) Ring-LWE problem

Ring-LWE problem: introduced by Lyubashevskey, Peikert and Regev in 2010 ([LPR]).

- $R = \mathbb{Z}[x]/(f(x))$, f(x) a degree *n* polynomial.
- q an integer (the modulus), $R_q = \mathbb{Z}_q[x]/(f(x))$.
- a secret polynomial $s \in R_q$.
- an error distribution χ over R.
- a sample is

$$(a, b = as + e) \in R_q \times R_q,$$

where $a \in R_q$ uniformly, and $e \leftarrow \chi$.

Remark: [LPR] uses $s \in R_q^{\vee}$ and χ a continuous Gaussian distribution on \mathbb{R}^n/qR^{\vee} .

Security of Ring-LWE

One main security reduction theorem in [LPR] is...

Theorem (LPR)

Fix a number field K of degree n with ring of integers R. Assume $r \ge \omega(\sqrt{\ln n})$. If search-RLWE is easy for all continuous Gaussian errors bounded by r, then for all fractional ideals \mathcal{I} of K, it is easy to sample a discrete Gaussian over \mathcal{I} with width

$$\gamma = \frac{q}{r} \cdot \textit{const}(\mathcal{I}).$$

Security of Ring-LWE

One main security reduction theorem in [LPR] is...

Theorem (LPR)

Fix a number field K of degree n with ring of integers R. Assume $r \ge \omega(\sqrt{\ln n})$. If search-RLWE is easy for all continuous Gaussian errors bounded by r, then for all fractional ideals \mathcal{I} of K, it is easy to sample a discrete Gaussian over \mathcal{I} with width

$$\gamma = rac{q}{r} \cdot \textit{const}(\mathcal{I}).$$

Remarks:

(1) sampling a discrete Gaussian over lattices has connections to other hard lattice problems.

(2) for cyclotomic rings, can replace the problem with GapSVP.

Security in practice

There are still some security-related open questions after [LPR]...

• What happens when the error size is below the [LPR] requirement (and/or the error is discrete)?

<ロ> < 母> < 目> < 目> < 目> 目 の へ つ 5/19

- What happens when the error size is below the [LPR] requirement (and/or the error is discrete)?
- What happens if one use R instead of R[∨]? (If R[∨] is principal, then there is a bijection. In general it is unclear).

- What happens when the error size is below the [LPR] requirement (and/or the error is discrete)?
- What happens if one use R instead of R[∨]? (If R[∨] is principal, then there is a bijection. In general it is unclear).
- How does the security level vary in terms of the shape of R, q and χ ?

- What happens when the error size is below the [LPR] requirement (and/or the error is discrete)?
- What happens if one use R instead of R[∨]? (If R[∨] is principal, then there is a bijection. In general it is unclear).
- How does the security level vary in terms of the shape of R, q and χ ?

Our goals:

1. Explore the boundary of security for all types of RLWE problems (by exploring attacks using the ring-structure).

2. Clarify the security of the RLWE schemes used in practical applications.

1 Background: Ring-LWE

- 2 Improved attack using cosets
- Infinite family of vulnerable instances (for narrow errors)
- Impossibility of our attack for 2-power cyclotomic fields

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 6/19

Review the attack of [CLS15]

Fix a prime ideal q above q in R. Let $\pi: R \to R/\mathfrak{q} \cong \mathbb{F}_{q^f}$.

Fix a prime ideal \mathfrak{q} above q in R. Let $\pi: R \to R/\mathfrak{q} \cong \mathbb{F}_{q^f}$.

Assume: $\pi(e)$ is distinguishable from uniform. Goal: recover $\pi(s)$. Fix a prime ideal \mathfrak{q} above q in R. Let $\pi:R\to R/\mathfrak{q}\cong \mathbb{F}_{q^f}.$

Assume: $\pi(e)$ is distinguishable from uniform. Goal: recover $\pi(s)$.

Algorithm:

- For each g in R/q:
 - compute the "errors"

$$e' = \pi(b) - \pi(a) \cdot g$$

for all samples (a, b).

 run a statistical test for uniform distribution on the set of e'. If non-uniform, return g. Fix a prime ideal \mathfrak{q} above q in R. Let $\pi:R\to R/\mathfrak{q}\cong \mathbb{F}_{q^f}.$

Assume: $\pi(e)$ is distinguishable from uniform. Goal: recover $\pi(s)$.

Algorithm:

- For each g in R/q:
 - compute the "errors"

$$e' = \pi(b) - \pi(a) \cdot g$$

for all samples (a, b).

 run a statistical test for uniform distribution on the set of e'. If non-uniform, return g. In [CLS15], we found several vulnerable Galois instances by searching. Recall that a number field of degree n is *Galois* if it has n automorphisms.

<□ > < @ > < E > < E > E のQ 8/19

<□ > < @ > < E > < E > E のQ 8/19

First we give an improved attack based on some extra assumptions.

First we give an improved attack based on some extra assumptions. Assume: there is a prime ideal q over q such that

•
$$R/\mathfrak{q} \cong \mathbb{F}_{q^2}$$
.

• $e \mod q$ is more likely to lie in \mathbb{F}_q than usual.

First we give an improved attack based on some extra assumptions. Assume: there is a prime ideal q over q such that

•
$$R/\mathfrak{q} \cong \mathbb{F}_{q^2}$$
.

• $e \mod q$ is more likely to lie in \mathbb{F}_q than usual.

Then we can use cosets to improve the χ^2 attack. This reduces runtime from $O(q^4)$ to $O(q^2)$.

Coset improvement: idea

Fix a set of coset representatives $\{t_i\}$ of $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$. Assume $\pi(s) = s_0 + t_j$, with $s_0 \in \mathbb{F}_q$.

Fix a set of coset representatives $\{t_i\}$ of $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$. Assume $\pi(s) = s_0 + t_j$, with $s_0 \in \mathbb{F}_q$.

Algorithm:

For each *i*:

For each sample (a, b):

Compute

$$m_i(a,b):=rac{\pi(b)^q-\pi(b)-(\pi(a)t_i)^q+\pi(a)t_i}{\pi(a)^q-\pi(a)}.$$

Run a statistical uniform test on the $m_i(a, b)$. If non-uniform, let s_0 be the element with highest frequency, and return $s_0 + t_i$.

< □ > < @ > < E > < E > E の < ⊙ /19

Fix a set of coset representatives $\{t_i\}$ of $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$. Assume $\pi(s) = s_0 + t_j$, with $s_0 \in \mathbb{F}_q$.

Algorithm:

For each *i*:

For each sample (a, b):

Compute

$$m_i(a,b) := rac{\pi(b)^q - \pi(b) - (\pi(a)t_i)^q + \pi(a)t_i}{\pi(a)^q - \pi(a)}$$

Run a statistical uniform test on the $m_i(a, b)$. If non-uniform, let s_0 be the element with highest frequency, and return $s_0 + t_i$.

Why it works: If i = j, $m_j(a, b) = s_0$ happens with probability the same as the probability that $e \in \mathbb{F}_q$; otherwise the result is uniform.

Table: Vulnerable instances under our improved attack

п	q	r ₀	no. samples	old time (min)	new time (min)
40	67	2.51	22445	209	3.5
60	197	2.76	3940	63	2.4
60	617	2.76	12340	$8.2 imes 10^5$ (est.)	21.3
80	67	2.51	3350	288.6	0.5
90	2003	3.13	60090	$6.6 imes 10^4$ (est.)	305
96	521	2.76	15630	4.5×10^3 (est.)	21.7
100	683	2.76	20490	1.6×10^4 (est.)	36.5
144	953	2.51	38120	342.6	114.5

2 Improved attack using cosets

Infinite family of vulnerable instances (for narrow errors)

Impossibility of our attack for 2-power cyclotomic fields

As another improvement to [CLS15], we construct an infinite family of vulnerable Galois number fields with moduli of residue degree 2.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

As another improvement to [CLS15], we construct an infinite family of vulnerable Galois number fields with moduli of residue degree 2.

Define the *relative error rate* as

$$r_0=\frac{r}{|\Delta_K|^{\frac{1}{2n}}}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our family allows the relative error rate to grow to infinity.

As another improvement to [CLS15], we construct an infinite family of vulnerable Galois number fields with moduli of residue degree 2.

Define the *relative error rate* as

$$r_0 = \frac{r}{|\Delta_K|^{\frac{1}{2n}}}.$$

Our family allows the relative error rate to grow to infinity.

Remark: independently, Castryck et al. constructed another infinite family, which is vulnerable to an *errorless LWE* attack as long as $r = O(|\Delta_K|^{\frac{1-\epsilon}{n}})$.

The family of rings: take $R = \mathbb{Z}[\zeta_p, \sqrt{d}]$ where

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 13/19

- The family of rings: take $R = \mathbb{Z}[\zeta_p, \sqrt{d}]$ where
- p: an odd prime.
- d: an integer, such that d is coprime to p and $d \equiv 2,3 \mod 4$.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 13/19

The family of rings: take $R = \mathbb{Z}[\zeta_p, \sqrt{d}]$ where

p: an odd prime.

d: an integer, such that d is coprime to p and $d \equiv 2,3 \mod 4$.

Modulus: take q a prime such that

(1) q is one modulo p, and (2) d is not a square in \mathbb{F}_q .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The family of rings: take $R = \mathbb{Z}[\zeta_p, \sqrt{d}]$ where p: an odd prime. d: an integer, such that d is coprime to p and $d \equiv 2,3 \mod 4$. Modulus: take q a prime such that

(1) q is one modulo p, and (2) d is not a square in \mathbb{F}_q .

Reason for vulnerability: there is a nice basis for R where the shorter half basis elements reduce to the prime field \mathbb{F}_q , and the longer half are much longer.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 13/19

Table of successful attacks

р	d	q	<i>r</i> 0	no. samples	time (sec)	
31	4967	311	8.94	3110	144.92	
43	4871	173	8.97	1730	6.44	
61	4643	367	8.84	3670	205.28	
83	4903	167	8.94	1670	5.74	
103	4951	619	8.94	6190	579.77	
109	4919	1091	8.94	10910	1818.82	
151	100447	907	14.08	9070	1394.18	
181	100267	1087	14.11	10870	1973.47	

Table: New vulnerable Galois RLWE instances

Table of successful attacks

р	d	q	<i>r</i> 0	no. samples	time (sec)
31	4967	311	8.94	3110	144.92
43	4871	173	8.97	1730	6.44
61	4643	367	8.84	3670	205.28
83	4903	167	8.94	1670	5.74
103	4951	619	8.94	6190	579.77
109	4919	1091	8.94	10910	1818.82
151	100447	907	14.08	9070	1394.18
181	100267	1087	14.11	10870	1973.47

Table: New vulnerable Galois RLWE instances

Remark: interpreted in the classical RLWE setting in [LPR], our attack corresponds to $\chi =$ an elliptic Gaussian with the largest width $r = \Omega(\frac{1}{p^{1/2}d^{1/4}}).$

- 1 Background: Ring-LWE
- 2 Improved attack using cosets
- Infinite family of vulnerable instances (for narrow errors)
- Impossibility of our attack for 2-power cyclotomic fields

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal: we want to prove that our attack does **not** work for 2-power cyclotomic rings, even if the width r is very small.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 16/19

Goal: we want to prove that our attack does **not** work for 2-power cyclotomic rings, even if the width r is very small.

Set up:

m = a power of 2, $R = \mathbb{Z}[\zeta_m]$, and n = m/2, we choose q to be a prime which is 1 modulo m.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Goal: we want to prove that our attack does **not** work for 2-power cyclotomic rings, even if the width r is very small.

Set up:

m = a power of 2, $R = \mathbb{Z}[\zeta_m]$, and n = m/2, we choose q to be a prime which is 1 modulo m.

We approximate discrete Gaussians on R with

$$e=\sum_{i=0}^{n-1}e_i\zeta_m^i,$$

with each e_i sampled from a shifted binomial distribution B(k, 1/2) - k/2.

Theorem

Let q, m be positive integers such that q is a prime, m is a power of 2, $q \equiv 1 \mod m$ and $q < m^2$. Let $\beta = \frac{1 + \frac{\sqrt{q}}{m}}{2} \in (0, 1)$. Then for any prime ideal q above q, we have

$$\Delta(e \mod \mathfrak{q}, \textit{uniform}) \leq rac{q-1}{2}eta^{rac{km}{4}}.$$

< □ > < @ > < E > < E > E の < 0 17/19

Table: statistical distances from uniform

Fixing k = 2 (roughly corresponds to $r = \sqrt{2\pi}/3$), we obtained ...

m (n = m/2)	q	$\log(\Delta(e \mod q, uniform))$
64	193	-40
128	1153	-97
256	3329	—194
512	10753	-431

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 18/19

Thank you!

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = りへで 19/19