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The (non-dual and discrete) Ring-LWE problem

Ring-LWE problem: introduced by Lyubashevskey, Peikert and Regev in
2010 ([LPR]).

R = Z[x ]/(f (x)), f (x) a degree n polynomial.

q an integer (the modulus), Rq = Zq[x ]/(f (x)).

a secret polynomial s ∈ Rq.

an error distribution χ over R.

a sample is
(a, b = as + e) ∈ Rq × Rq,

where a ∈ Rq uniformly, and e ← χ.

Remark: [LPR] uses s ∈ R∨q and χ a continuous Gaussian distribution on
Rn/qR∨.
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Security of Ring-LWE

One main security reduction theorem in [LPR] is...

Theorem (LPR)

Fix a number field K of degree n with ring of integers R. Assume
r ≥ ω(

√
ln n). If search-RLWE is easy for all continuous Gaussian errors

bounded by r , then for all fractional ideals I of K , it is easy to sample a
discrete Gaussian over I with width

γ =
q

r
· const(I).

Remarks:
(1) sampling a discrete Gaussian over lattices has connections to other
hard lattice problems.
(2) for cyclotomic rings, can replace the problem with GapSVP.
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Security in practice

There are still some security-related open questions after [LPR]...

What happens when the error size is below the [LPR] requirement
(and/or the error is discrete)?

What happens if one use R instead of R∨? (If R∨ is principal, then
there is a bijection. In general it is unclear).

How does the security level vary in terms of the shape of R, q and χ?

Our goals:
1. Explore the boundary of security for all types of RLWE problems (by
exploring attacks using the ring-structure).

2. Clarify the security of the RLWE schemes used in practical applications.
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Review the attack of [CLS15]

Fix a prime ideal q above q in R. Let π : R → R/q ∼= Fqf .

Assume: π(e) is distinguishable from uniform.
Goal: recover π(s).

Algorithm:
1 For each g in R/q:

compute the “errors”

e′ = π(b)− π(a) · g

for all samples (a, b).
run a statistical test for uniform distribution on the set of e′. If
non-uniform, return g.
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Coset improvement: assumptions

In [CLS15], we found several vulnerable Galois instances by searching.
Recall that a number field of degree n is Galois if it has n automorphisms.

Galois number fields are nice for Ring-LWE because we have a
search-to-decision reduction.

First we give an improved attack based on some extra assumptions.
Assume: there is a prime ideal q over q such that

R/q ∼= Fq2 .

e mod q is more likely to lie in Fq than usual.

Then we can use cosets to improve the χ2 attack. This reduces runtime
from O(q4) to O(q2).
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Coset improvement: idea

Fix a set of coset representatives {ti} of Fq2\Fq. Assume π(s) = s0 + tj ,
with s0 ∈ Fq.

Algorithm:
For each i :

For each sample (a, b):
Compute

mi (a, b) :=
π(b)q − π(b)− (π(a)ti )

q + π(a)ti
π(a)q − π(a)

.

Run a statistical uniform test on the mi (a, b). If non-uniform, let s0
be the element with highest frequency, and return s0 + ti .

Why it works: If i = j , mj(a, b) = s0 happens with probability the same as
the probability that e ∈ Fq; otherwise the result is uniform.
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Table: attacks in [CLS15] improved by using cosets

Table: Vulnerable instances under our improved attack

n q r0 no. samples old time (min) new time (min)

40 67 2.51 22445 209 3.5
60 197 2.76 3940 63 2.4
60 617 2.76 12340 8.2 ×105 (est.) 21.3
80 67 2.51 3350 288.6 0.5
90 2003 3.13 60090 6.6 ×104 (est.) 305
96 521 2.76 15630 4.5 ×103 (est.) 21.7

100 683 2.76 20490 1.6 ×104(est.) 36.5
144 953 2.51 38120 342.6 114.5



11/19

Plan

1 Background: Ring-LWE

2 Improved attack using cosets

3 Infinite family of vulnerable instances (for narrow errors)

4 Impossibility of our attack for 2-power cyclotomic fields



12/19

Infinite family: a sketch

As another improvement to [CLS15], we construct an infinite family of
vulnerable Galois number fields with moduli of residue degree 2.

Define the relative error rate as

r0 =
r

|∆K |
1
2n

.

Our family allows the relative error rate to grow to infinity.

Remark: independently, Castryck et al. constructed another infinite family,

which is vulnerable to an errorless LWE attack as long as r = O(|∆K |
1−ε
n ).
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Infinite family: some details

The family of rings: take R = Z[ζp,
√
d ] where

p : an odd prime.
d : an integer, such that d is coprime to p and d ≡ 2, 3 mod 4.

Modulus: take q a prime such that

(1) q is one modulo p, and (2) d is not a square in Fq.

Reason for vulnerability: there is a nice basis for R where the shorter half
basis elements reduce to the prime field Fq, and the longer half are much
longer.
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Table of successful attacks

Table: New vulnerable Galois RLWE instances

p d q r0 no. samples time (sec)

31 4967 311 8.94 3110 144.92
43 4871 173 8.97 1730 6.44
61 4643 367 8.84 3670 205.28
83 4903 167 8.94 1670 5.74

103 4951 619 8.94 6190 579.77
109 4919 1091 8.94 10910 1818.82
151 100447 907 14.08 9070 1394.18
181 100267 1087 14.11 10870 1973.47

Remark: interpreted in the classical RLWE setting in [LPR], our attack
corresponds to χ = an elliptic Gaussian with the largest width
r = Ω( 1

p1/2d1/4 ).
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Impossibility of our attack on 2-power cyclotomic rings

Goal: we want to prove that our attack does not work for 2-power
cyclotomic rings, even if the width r is very small.

Set up:
m = a power of 2, R = Z[ζm], and n = m/2, we choose q to be a prime
which is 1 modulo m.

We approximate discrete Gaussians on R with

e =
n−1∑
i=0

eiζ
i
m,

with each ei sampled from a shifted binomial distribution B(k, 1/2)− k/2.
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e mod q is close to uniform

Theorem

Let q,m be positive integers such that q is a prime, m is a power of 2,

q ≡ 1 mod m and q < m2. Let β =
1+
√
q

m
2 ∈ (0, 1). Then for any prime

ideal q above q, we have

∆(e mod q, uniform) ≤ q − 1

2
β

km
4 .
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Table: statistical distances from uniform

Fixing k = 2 (roughly corresponds to r =
√

2π/3), we obtained ...

m (n = m/2) q log(∆(e mod q, uniform))

64 193 −40
128 1153 −97
256 3329 −194
512 10753 −431
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Thank you!

Thank you!
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