Solving Discrete Logarithms on a 170-bit MNT Curve by Pairing Reduction

Aurore Guillevic and François Morain and Emmanuel Thomé

University of Calgary, PIMS–CNRS, LIX–École Polytechnique, Inria, Loria

SAC, August 12, 2016
Outline

Motivation: Pairing-based cryptography

The Number Field Sieve algorithm

$\text{GF}(p^3)$: breaking a 508-bit MNT curve
Asymetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie–Hellman, etc)

Given a finite cyclic group \((G, \cdot)\), a generator \(g\) and \(y \in G\), compute \(x\) s.t. \(y = g^x\).

Common choice of \(G\):
prime finite field \(\mathbb{F}_p\) (since 1976), characteristic 2 finite field \(\mathbb{F}_{2^n}\),
elliptic curve \(E(\mathbb{F}_p)\) (since 1985),
In particular at SAC 2016: Kummer surfaces and Four\(\mathbb{Q}\) \(E(\mathbb{F}_{p^2})\) (Smith and Longa talks)
Elliptic curves in cryptography

\[E : y^2 = x^3 + ax + b, \quad a, b \in \mathbb{F}_p \]

- proposed in 1985 by Koblitz, Miller
- \(E(\mathbb{F}_p) \) has an efficient group law (chord an tangent rule) \(\rightarrow G \)
- \(\#E(\mathbb{F}_p) = p + 1 - t \), trace \(t \): \(|t| \leq 2\sqrt{p} \)

Need a prime-order (or with tiny cofactor) elliptic curve:

\[h \cdot \ell = \#E(\mathbb{F}_p), \quad \ell \text{ is prime}, \quad h \text{ tiny, e.g. } h = 1, 2 \]

- compute \(t \)
- slow to compute in 1985: can use \textit{supersingular curves} whose trace is known.
Supersingular elliptic curves

Example over \mathbb{F}_p, $p \geq 5$

$$E : y^2 = x^3 + x / \mathbb{F}_p, \quad p = 3 \mod 4$$

s.t. $t = 0$, $\#E(\mathbb{F}_p) = p + 1$.

take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.
Supersingular elliptic curves

Example over \mathbb{F}_p, $p \geq 5$

$$E : y^2 = x^3 + x ~/\mathbb{F}_p, \quad p = 3 \mod 4$$

s.t. $t = 0$, $\#E(\mathbb{F}_p) = p + 1$.

take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks

There exists a pairing e that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2}

where DLP is much easier.

Do not use supersingular curves.
Supersingular elliptic curves

Example over \mathbb{F}_p, $p \geq 5$

$$E : y^2 = x^3 + x \pmod{\mathbb{F}_p}, \; p = 3 \mod 4$$

s.t. $t = 0$, $\#E(\mathbb{F}_p) = p + 1$.

take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks
There exists a pairing e that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2}
where DLP is much easier.

Do not use supersingular curves.

But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a
163-bit supersingular curve, where $G_T \subset \mathbb{F}_{p^2}$ of 326 bits.
Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, \(\mathbb{G}_T \subset \mathbb{F}_{p^2} \) of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

\[
e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}
\]
Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $G_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks
Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbb{G}_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \rightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $G_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E(\mathbb{F}_p)$: hard problem (exponential, in $O(\sqrt{\ell})$)
1999: Frey–Muller–Rück: actually, Miller Algorithm can be much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $G_T \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \rightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e: hard problem (exponential)
- discrete logarithm computation in $E(\mathbb{F}_p)$: hard problem (exponential, in $O(\sqrt{\ell})$)
- discrete logarithm computation in $\mathbb{F}_{p^n}^*$: easier, subexponential \rightarrow take a large enough field
Common target groups \mathbb{F}_{p^n}

- \mathbb{F}_{p^2} where E/\mathbb{F}_p is a supersingular curve
- $\mathbb{F}_{p^3}, \mathbb{F}_{p^4}, \mathbb{F}_{p^6}$ where E is an ordinary MNT curve [Miyaji Nakabayashi Takano 01]
- $\mathbb{F}_{p^{12}}$ where E is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:
- **hard** in \mathbb{F}_p where p is a 3072-bit prime
- **easy** in \mathbb{F}_{2^n} where $n = 3072$
 [Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]
- what about \mathbb{F}_{p^3} where p is a 1024-bit prime?

Start the comparison for 512-bit finite fields.
NFS algorithm to compute discrete logarithms

Input: finite field \mathbb{F}_{p^n}, generator g, target y

Output: discrete logarithm x of y in basis g, $g^x = y$

[Diagram of the NFS algorithm]

[graph: N. Heninger]
1. Polynomial selection
2. Relation collection
3. Linear algebra

We know the log of small elements in \(\mathbb{Z}[x]/(f(x)) \) and \(\mathbb{Z}[x]/(g(x)) \)

- small elements are of the form \(a_i - b_i x = p_i \in \mathbb{Z}[x]/(f(x)), \) s.t. \(\|\text{Norm}(p_i)\| = p_i < B \)

4. Individual discrete logarithm
NFS algorithm for DL in GF(p^n)

How to generate relations?
Use two distinct rings $R_f = \mathbb{Z}[x]/(f(x))$, $R_g = \mathbb{Z}[x]/(g(x))$ and two maps ρ_f, ρ_g that map $x \in R_f$, resp. $x \in R_g$ to the same element $z \in \text{GF}(p^n)$:

$$
\begin{align*}
\rho_f &: x \in R_f \mapsto z, \\
\rho_g &: x \in R_g \mapsto z
\end{align*}
$$

$\mathbb{Z}[x]$

$R_f = \mathbb{Z}[x]/(f(x))$

$R_g = \mathbb{Z}[x]/(g(x))$

$R_f \ni x \mapsto z$

$R_g \ni x \mapsto z$

$\text{GF}(p^n) = \text{GF}(p)[z]/(\varphi(z))$
Weak MNT curve, 170-bit prime p, 508-bit \mathbb{F}_{p^3}

[Miyaji Nakabayashi Takano 01]

$E/\mathbb{F}_p : y^2 = x^3 + ax + b$, where

\begin{align*}
a &= 0x22ffbb20cc052993fa27dc507800b624c650e4ff3d2 \\
b &= 0x1c7be6fa8da953b5624efc72406af7fa77499803d08 \\
p &= 0x26dccacc5041939206cf2b7dec50950e3c9fa4827af \\
\ell &= 0xa60fd646ad409b3312c3b23ba64e082ad7b354d
\end{align*}

such that

\begin{align*}
x_0 &= -0x732c8cf5f983038060466 \\
t &= 6x_0 - 1 \\
p &= 12x_0^2 - 1 \\
\#E(\mathbb{F}_p) &= p + 1 - t = 7^2 \cdot 313 \cdot \ell
\end{align*}
Polynomial selection: norm estimates

$log_2(\text{norms})$, Bistritz–Lifshitz bound

- **JP, Conj,** $(\deg f, \deg g) = (6, 3)$
- **GJL,** $(\deg f, \deg g) = (4, 3)$
- **JLSV$_1$,** $(\deg f, \deg g) = (3, 3)$
- **JLSV$_2$,** $(\deg f, \deg g) = (4, 3)$
Polynomial selection: norm estimates

<table>
<thead>
<tr>
<th>Method</th>
<th>Bits</th>
<th>Galois aut. order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joux–Pierrot and Conjugation</td>
<td>319</td>
<td>3</td>
</tr>
<tr>
<td>Generalized Joux–Lercier</td>
<td>310</td>
<td>–</td>
</tr>
<tr>
<td>JouxLercierSmartVercauteren JLSV1</td>
<td>326</td>
<td>3</td>
</tr>
</tbody>
</table>

Galois automorphism of order 3 \rightarrow will obtain 3 times more relations for free

- **JLSV1:** $\sqrt{p} \approx 2^{85}$ possible polynomials f
- Conjugation: allow non-monic polynomials $\rightarrow \approx 2^{20}$ possible f

In both cases, take

$$\varphi(x, y) = x^3 - yx^2 - (y + 3)x - 1$$

s.t. $\sigma : x \mapsto -1 - 1/x$ degree 3 Galois automorphism of $\mathbb{Q}[x]/(\varphi(x))$, K_f and K_g
Polynomial Selection

\[p = 908761003790427908077548955758380356675829026531247 \]
of 170 bits

\[A = 28y^2 + 16y - 109 \]

\[f = 28x^6 + 16x^5 - 261x^4 - 322x^3 + 79x^2 + 152x + 28 \]

\[\|f\|_\infty = 8.33 \text{ bits} \]

\[\alpha(f) = -2.9 \]

\[g = 24757815186639197370442122x^3 + 40806897040253680471775183x^2 \]

\[-33466548519663911639551183x - 24757815186639197370442122 \]

\[\|g\|_\infty = 85.01 \text{ bits} \]

\[\alpha(g) = -4.1 \]

Murphy’s E value:

\[\mathbb{E}(f, g) = 1.31 \cdot 10^{-12} \]
Smoothness bound $B = 50000000 (= 2^{25.6})$ on both sides
Special-q in $[B, 2^{27}]$

660 core-days (4-core Intel Xeon E5520 @ 2.27GHz).

$57 \cdot 10^6$ relations \rightarrow filtered \rightarrow
1982791×1982784 matrix with weight $w(M) = 396558692$.
The whole matrix would have 7 more columns for taking the 7 Schirokaurer Maps into account.
8 sequences in Block-Wiedemann algorithm.
8 Krylov sequences 250 core-days, four 16-code nodes / sequence
finding linear matrix generator 3.1 core-days / 64 cores
building solution 170 core-days
Reconstructed virtual logarithms for 15196345 out of the 15206761 elements of the bases (99.9%).

423 core-days on a cluster Intel Xeon E5-2650, 2.4GHz
Individual discrete logarithm

Take $P_0 = [x_P, y_P] \in E(\mathbb{F}_p)$,

$x_P = \lfloor \pi 10^{50} \rfloor = 314159265358979323846264338327950288419716939937510$

$y_P = \sqrt{x_P^3 + a x_P + b} = 4600955755547938627692618282835762310592027720907930$

and set $\text{Target}_E = P = [7^2 \cdot 313]P_0$.

e is the reduced Tate pairing $e_\ell(P, Q)^{(p^3 - 1)/\ell}$

$E[\ell] \cong \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z} \cong \langle G_1 \rangle \oplus \langle G_2 \rangle$ where

G_1 a generator of $E(\mathbb{F}_p)[\ell]$

G_2 a generator of second dim of r-torsion of $E(\mathbb{F}_{p^3})[\ell]$

Target in \mathbb{F}_{p^3}: $T = e(P, G_2)$, Basis: $g = e(G_1, G_2)$

Change $\mathbb{F}_{p^3} = \mathbb{F}_p[X]/(X^3 + X + 1)$ to $\mathbb{F}_p[Z]/(\phi(Z))$

$T = 0x11a2f1f13fa9b08703a033ee3c4321539156f865ee9+0x1098c3b7280ef2cf8b091d08197de0a9ba935ff79c6 Z$

$+0x221205020e7729cb46166a9edfd5acb3bf59dd0a7d4 Z^2$

$G_T = 0xd772111b150ec08f0ad89d987f1b037c630155608c+0xf956cab6840c7e909abc29584f1ae48ccbd39d698 Z$

$+0x205eb5b1e09f76bf0ef85eefa3fdcb3827d43441b3 Z^2$
Individual discrete logarithm

Initial splitting: 32-core hours
preimage of g^{52154} in K_f has 59-bit-smooth norm
preimage of g^{35313} T in K_f has 54-bit-smooth norm

Descent procedure: 13.4 hours.

Virtual log of g:
\[\text{vlog}(g) = 0x8c58b66f0d8b2e99a1c0530b2649ec0c76501c3 \]

virtual log of the target:
\[\text{vlog}(T) = 0x48a6bcaf7cacc997658c98a0c196c25116a0aa \]

Then $\log_g(T) = \text{vlog}(T) / \text{vlog}(g) \mod \ell$.

\[\log(T) = \log(P) = 0x711d13ed75e05cc2ab2c9ec2c910a98288ec038 \mod \ell . \]
Running-time comparison

<table>
<thead>
<tr>
<th>record</th>
<th>relation col.</th>
<th>linear algebra</th>
<th>ind. log</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleinjung 2007</td>
<td>3.3 CPU-years</td>
<td>14 years</td>
<td>(few hours)</td>
<td>17.3 years</td>
</tr>
<tr>
<td>530-bit \mathbb{F}_p</td>
<td>3.2 GHz Xeon64</td>
<td>3.2 GHz Xeon64</td>
<td>3.2 GHz Xeon64</td>
<td></td>
</tr>
<tr>
<td>BGGM 2014</td>
<td>0.19 year</td>
<td>30.3 hours</td>
<td>(few hours)</td>
<td>0.2 year</td>
</tr>
<tr>
<td>529-bit \mathbb{F}_{p^2}</td>
<td>2.0 GHz E5-2650</td>
<td>NVidia GTX 680 graphic card</td>
<td>2.0 GHz E5-2650</td>
<td></td>
</tr>
<tr>
<td>BGGM 2015</td>
<td>2.33 years</td>
<td>15 years</td>
<td>(few days)</td>
<td>17.3 years</td>
</tr>
<tr>
<td>512-bit \mathbb{F}_{p^3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this work</td>
<td>1.81 years</td>
<td>1.16 years</td>
<td>(2 days)</td>
<td>2.97 years</td>
</tr>
<tr>
<td>508-bit \mathbb{F}_{p^3}</td>
<td>2.27GHz 4-core Xeon E5520</td>
<td>2.4GHz Xeon E5-2650</td>
<td>2.27GHz 4-core Xeon E5520</td>
<td></td>
</tr>
</tbody>
</table>

* linear algebra modulo $\ell \sim p$ (where $\ell \mid p + 1 - t$) instead of $\ell \sim p^{\varphi(n)} = p^2$, (+ better polynomials + smaller matrix) → much faster than previous 512-bit \mathbb{F}_{p^3}.

State of the art in prime field: 768-bit \mathbb{F}_p
5300 core-years on 2.2 GHz Xeon E5-2660
Future work

- 600-bit DL record in \mathbb{F}_{p^3}, \mathbb{F}_{p^4}, \mathbb{F}_{p^6}, $\mathbb{F}_{p^{12}}$ (with Gaudry, Grémy, Morain, Thomé)
- need new techniques for \mathbb{F}_{p^4}, \mathbb{F}_{p^6}, $\mathbb{F}_{p^{12}}$ ([Barbulescu–Gaudry–Kleinjung] + [Kim] + [Sarkar–Singh] + [Jeong–Kim]: Extended TNFS)
- implementation in cado-nfs

Consequences:
Increase the size of the target groups \mathbb{F}_{p^n} in pairing-based cryptography
Joint work with Pierick Gaudry and François Morain.

Setting

generic prime $p = \lfloor 10^{59} \pi \rfloor + 3569289$ of 60 decimal digits

118dd prime-order subgroup ℓ s.t. $39\ell = p^2 + p + 1$

Polynomial selection: Conjugation method (6 core-days)

$$f_0 = 20x^6 - x^5 - 290x^4 - 375x^3 + 15x^2 + 121x + 20$$

$$f_1 = 136638347141315234758260376470x^3 - 29757113352694220846501278313x^2$$

$$- 439672154776639925121282407723x - 136638347141315234758260376470$$

$$\varphi = \gcd(f_0, f_1) \mod p = x^3 - yx^2 - (y + 3)x - 1,$$

where y is a root modulo p of

$$A(y) = 20y^2 - y - 169$$
Relation collection: 9 core-years
Special-q lattice sieving, smoothness bound of $80M = 2^{26.25}$, large prime bound of 2^{28}.
Saved a factor 3 thanks to Galois σ.
Obtained 37705176 raw relations on side 0 and 36850254 on side 1.

Filtering
Duplicate removal: 48016023 unique relations (35.5% dup. rate)
Densification: 4.5M matrix, 200 coefs per row on average.

Linear algebra: 14 core-years
Block-Wiedemann algorithm with the 7 vectors of Schirokauer maps as input vectors for the $n = 7$ sequences.

Back-substitution (incl. Schirokauer maps): 32 core-days
Obtained the virtual logs of 98.7% of the ideals below 2^{28}.

discrete log record in 180dd (593-bit) \mathbb{F}_{p^3}
discrete log record in 180dd (593-bit) \mathbb{F}_{p^3}

Generator of \mathbb{F}_{p^3}: $g = x + 5$
and target from the decimals of $e = \exp(1)$:

$$T = 271828182845904523536028747135266249775724709369995957496696 x^2$$
$$+ 76277240766303535475945713821785251664274274663919320030599 x$$
$$+ 218174135966290435729003342952605956307381323286279434907632$$

Individual discrete logarithm: 1 core-day

$$\log_g(T) = 53429982982386577767536263791683222813127121921417390744 \mod \ell$$

Total time: 23 core-years

180dd integer factorization: 5.6 core-years (Gaudry’s talk SAC’14)
NFS-DL in $\text{GF}(p)$, 180dd p: 131 core-years (BGIJT 14)
NFS-DL in $\text{GF}(p^2)$, 180dd p^2: 0.5 core-years (BGGM 15)
discrete log record in 180dd (593-bit) \mathbb{F}_{p^3}

Generator of \mathbb{F}_{p^3}: $g = x + 5$

and target from the decimals of $e = \exp(1)$:

$T = 271828182845904523536028747135266249775724709369995957496696 \times x^2$
$+ 76277240766303535475945713821785251664274274663919320030599 \times x$
$+ 218174135966290435729003342952605956307381323286279434907632$

Individual discrete logarithm: 1 core-day

$\log_g(T) = 5342998298238657776753623791683222813127121921417390744$
$\mod \ell$

Total time: 23 core-years

180dd integer factorization: 5.6 core-years (Gaudry’s talk SAC’14)

NFS-DL in GF(p), 180dd p: 131 core-years (BGIJT 14)

NFS-DL in GF(p^2), 180dd p^2: 0.5 core-years (BGGM 15)

Thank you & Merci!