
Keymill: Side-Channel Resilient Key Generator
A New Concept for SCA-Security by Design

Mostafa Taha, Arash Reyhani-Masoleh, and Patrick Schaumont

Post-Doctoral Fellow at Western University

Selected Areas in Cryptography (SAC’16)

12 August, 2016

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada

under the Discovery and Discovery Accelerate Supplement (DAS) Grants awarded to A. Reyhani-Masoleh.

Outline

• We propose:
• A new concept for protection against Side-Channel Analysis, Promoting

for new cryptographic designs.

• A new definition for SCA-security.

• A new validation test for SCA-security.

• A practical, lightweight realization, where
SCA-security = Mathematical-security

• Outline:
• Introduction to Side-Channel Analysis.

• The current methods of protection.

• The new concept for protection.

• Realization.

Side-Channel Analysis

3

Side-Channel Analysis

4

K0 K1 K2

Sensitive

Var.

Modeled

Power

Sensitive

Var.

Modeled

Power

Sensitive

Var.

Modeled

Power

0x0F 4 0x82 2 0xF1 5

0xAA 4 0x51 3 0x4E 4

0xD3 5 0xA3 4 0x0B 3

0x31 3 0xC7 5 0x92 3

: : : : : :

Measured

Power

2

3

5

4

:

Subkey Hypothesis

Correlation

Inputs

Subkey

(8 bits)

Conditions for Side-Channel Analysis

1. A small part of the key affects an intermediate variable.

2. The intermediate variable affects observable leakage.

3. The observable leakage can be predicted at a known input.

4. The adversary can collect unbounded information against the
small part of the key.

Current Countermeasures

6

0xAA

0x32

0x98

0x25

0x1F

0x3A

𝑘3𝑘2𝑘1 𝑓 𝑓

V
a

r.
 A

ff
e

c
ts

 L
e

a
k
.

P
re

d
ic

ta
b

le
 L

e
a

k
.

U
n

b
o

u
n

d
e
d

 I
n

fo
.

Side-Channel Analysis

Hiding Masking

Leakage

Resiliency

S
u

b
k
e

y
A

ff
e

c
ts

 V
a

r.

Keymill

0xAA

0x3A

• Reduce S/N ratio

• Randomization

• Use key only one

SCA-Security

Sbox

8-bits key

8-bits input

Leakage with 8-bits of complexity

(SCA-Security)

The Secret Key (128 bits)

• AES

SCA-Security

• SCA-Security

• In other words, the minimum size of key hypothesis that is
required to accurately estimate the leakage.

• SCA-security of AES 8 bits

• SCA-security of Present 4 bits

• SCA-security of square-and-multiply RSA 1 bits

How Our Protection Works

128-bit Sbox

128-bits key

(the Full key)

1-bits input

Leakage with 128-bits of complexity

The Secret Key (128 bits)

The goal is to find an implementable non-linear function

that takes 128 bits of key and one bit of input

• Imaginary SBox

Non-Linear Feedback Shift Register

• 128-bit register, with 128 taps.

• SCA-security = 128 bits . Awesome, but
• There is no structure like this in the literature.

• Very difficult to be implemented.

𝐼𝑉𝑖

𝐹

128-bits of Secret Key

Keystream out

Toy Model I:

• 8-bit register, with 8 taps.

• SCA-security = 8 bits.

• Can only be broken on clock cycle number 8.

8-bits of secret key

Toy Model II:

• Two 8-bit, 8-tap NLFSRs with Rotating Cross-Connect.

• SCA-security = 16 bits.
• The other R is feeding data-dependent noise, and cannot be isolated.

• The first structure ever to combine two non-linear functions while being
immune against the divide-and-conquer principle of SCA.

• Similar number of taps is still a limitation

8-bits of secret key 8-bits of secret key

Toy Model III:

• Two 8-bit registers with 4-bit feedback function

• If the taps are distributed over the odd (or even) bits,
then SCA-security = 16 bits.

• The other secret bits are feeding data-dependent noise, and cannot be
isolated.

Keymill

Keymill

• Keystream generator

• Why? Less emphasis on cryptographic properties, and focus on
SCA-properties. Keymill as a stream cipher is coming …

Keymill

• SCA-security = 128 bits.

• 4 Registers
• 31, 32, 32 and 33 bits, with

17, 17, 17 and 18 taps.

• Cumulative length is 128-bits to
maintain entropy of the secret key.

• The taps are distributed nicely over
the registers to keep SCA-security.

• Selected from the Achterbahn
stream cipher.

Keymill

• The key is loaded into the registers.

• The structure accepts Initialization
Vector (IV) of any length, 1-bit per
clock for each register.

• Runs for 33 clock cycles without
output (warm-up).

• Then, generates keystream bits.

Keymill

• Cautionary Notes:
• Not a stream cipher yet!

only a keystream generator.

• The two sides of communication need
to apply the same countermeasure.

• Entropy of the keystream depends on
entropy of the input key.

Validation

• Hiding
is validated by comparing the success rate of a practical attack.

• Masking
is validated by the ability to distinguish leakage of a fixed input versus
random inputs.

• Leakage Resiliency
is validated by mathematical proofs.

• Keymill
is validated by testing the SCA-Security.

Validation

• New SCA-Security-Test:
1. Choose a random key.

2. Collect power traces.

3. Generate modeled traces
using 96-bits of the key.
Find the correlation

4. Generate modeled traces
at random wrong keys.
Find the correlations.

5. Compare.

0 5 10 15 20 25 30 35 40 45 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Clock Cycles

C
o
rr

e
la

ti
o
n

SCA-Test using 96 correct key bits (Simulated Traces)

96-bits of Correct Key

Other Keys

Implementation

• Only 775 GEs

• 97 Clock cycles (including 33 clocks for warm-up)

Conclusion

• With Keymill, we promote to
• Measure security against SCA attacks in terms of bits, rather than

success rate.

• Design new cryptographic schemes with inherent SCA-security, with
less dependence on the underlying implementation.

• Design new schemes with
SCA-security = Mathematical-security.

• Currently, we propose Keymill as a keystream generator, rather than an
actual stream cipher (future goal).

Thank You

mtaha9@uwo.ca

Keymill Vs GGM

• GGM is a tree structure that was
proposed to realize PRFs from
PRGs.

• It was re-introduced to initialize
leakage resilient primitives.

• Each step accepts 1-bit of IV,
followed by full randomization.

• GGM is an algorithmic
countermeasure using a leaky
function.

𝐾

𝐾0 𝐾1

𝐾00 𝐾01 𝐾10 𝐾11

Master Key

Keystream

Step 𝑅0
1 𝑅1

1

𝑅0
2 𝑅1

2 𝑅0
2 𝑅1

2

[SPY+10]

𝑛(0)

𝑛(1)

Encryption

EE

EE EE

