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Outline

• We propose:
• A new concept for protection against Side-Channel Analysis, Promoting 

for new cryptographic designs.

• A new definition for SCA-security.

• A new validation test for SCA-security.

• A practical, lightweight realization, where 
SCA-security = Mathematical-security

• Outline:
• Introduction to Side-Channel Analysis.

• The current methods of protection.

• The new concept for protection.

• Realization.
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Conditions for Side-Channel Analysis

1. A small part of the key affects an intermediate variable.

2. The intermediate variable affects observable leakage.

3. The observable leakage can be predicted at a known input.

4. The adversary can collect unbounded information against the 
small part of the key.



Current Countermeasures 
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Keymill
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• Reduce S/N ratio

• Randomization

• Use key only one



SCA-Security

Sbox

8-bits key

8-bits input

Leakage with 8-bits of complexity

(SCA-Security)

The Secret Key (128 bits)

• AES



SCA-Security

• SCA-Security

• In other words, the minimum size of key hypothesis that is 
required to accurately estimate the leakage.

• SCA-security of AES  8 bits

• SCA-security of Present  4 bits

• SCA-security of square-and-multiply RSA  1 bits



How Our Protection Works

128-bit Sbox

128-bits key

(the Full key)

1-bits input

Leakage with 128-bits of complexity

The Secret Key (128 bits)

The goal is to find an implementable non-linear function 

that takes 128 bits of key and one bit of input 

• Imaginary SBox



Non-Linear Feedback Shift Register

• 128-bit register, with 128 taps.

• SCA-security = 128 bits . Awesome, but
• There is no structure like this in the literature. 

• Very difficult to be implemented. 

𝐼𝑉𝑖

𝐹

128-bits of Secret Key

Keystream out



Toy Model I:

• 8-bit register, with 8 taps.

• SCA-security = 8 bits.

• Can only be broken on clock cycle number 8.

8-bits of secret key



Toy Model II:

• Two 8-bit, 8-tap NLFSRs with Rotating Cross-Connect.

• SCA-security = 16 bits.
• The other R is feeding data-dependent noise, and cannot be isolated.

• The first structure ever to combine two non-linear functions while being 
immune against the divide-and-conquer principle of SCA. 

• Similar number of taps is still a limitation 

8-bits of secret key 8-bits of secret key



Toy Model III:

• Two 8-bit registers with 4-bit feedback function

• If the taps are distributed over the odd (or even) bits, 
then SCA-security = 16 bits.

• The other secret bits are feeding data-dependent noise, and cannot be 
isolated.



Keymill



Keymill

• Keystream generator

• Why? Less emphasis on cryptographic properties, and focus on 
SCA-properties. Keymill as a stream cipher is coming …



Keymill

• SCA-security = 128 bits.

• 4 Registers
• 31, 32, 32 and 33 bits, with

17, 17, 17 and 18 taps.

• Cumulative length is 128-bits to 
maintain entropy of the secret key.

• The taps are distributed nicely over 
the registers to keep SCA-security.

• Selected from the Achterbahn
stream cipher.



Keymill

• The key is loaded into the registers.

• The structure accepts Initialization 
Vector (IV) of any length, 1-bit per 
clock for each register.

• Runs for 33 clock cycles without 
output (warm-up).

• Then, generates keystream bits.



Keymill

• Cautionary Notes:
• Not a stream cipher yet!

only a keystream generator.

• The two sides of communication need 
to apply the same countermeasure.

• Entropy of the keystream depends on 
entropy of the input key.



Validation

• Hiding
is validated by comparing the success rate of a practical attack.

• Masking
is validated by the ability to distinguish leakage of a fixed input versus 
random inputs.

• Leakage Resiliency
is validated by mathematical proofs.

• Keymill
is validated by testing the SCA-Security.



Validation

• New SCA-Security-Test:
1. Choose a random key.

2. Collect power traces.

3. Generate modeled traces 
using 96-bits of the key. 
Find the correlation

4. Generate modeled traces 
at random wrong keys. 
Find the correlations.

5. Compare.
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Implementation

• Only 775 GEs

• 97 Clock cycles (including 33 clocks for warm-up)



Conclusion

• With Keymill, we promote to 
• Measure security against SCA attacks in terms of bits, rather than 

success rate.

• Design new cryptographic schemes with inherent SCA-security, with 
less dependence on the underlying implementation.

• Design new schemes with 
SCA-security = Mathematical-security.

• Currently, we propose Keymill as a keystream generator, rather than an 
actual stream cipher (future goal).
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Keymill Vs GGM

• GGM is a tree structure that was 
proposed to realize PRFs from 
PRGs.

• It was re-introduced to initialize 
leakage resilient primitives.

• Each step accepts 1-bit of IV, 
followed by full randomization.

• GGM is an algorithmic 
countermeasure using a leaky
function.
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