
ENGI 3861 – Digital Logic 

II. COMBINATIONAL LOGIC DESIGN 
 
Combinational Logic  output of digital system is only dependent 
on current inputs (i.e., no memory) 
 
(a) Boolean Algebra 
 
- developed by George Boole in 1850s 
 
- algebra defined on a set of 2 elements, {0, 1}, with binary  

operators multiply (AND), add (OR), and invert (NOT): 
 
  XY  X AND Y 
 
  X+Y  X OR Y 
                   __ 
  X or X  NOT (X) 
  
- Boolean algebra theorems: 
 

One Variable Theorems 
Label “” “+” 

Identities X1 = X X+0 = X 
Null elements X0 = 0 X+1 = 1 
Idempotency XX = X X+X = X 
Complements XX = 0 X+X = 1 
Involution (X) = X 

Two/Three Variable Theorems 
Commutativity XY = YX X+Y = Y+X 
Associativity (XY)Z = X(YZ) (X+Y)+Z = X+(Y+Z) 
Distributivity (X+Y)(X+Z) = X+YZ XY+XZ = X(Y+Z) 
DeMorgan’s (XY) = X+Y (X+Y) = XY 
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- duality:  
  to get “+” column from “” column (and vice versa),  
  swap “+” with “” operators and swap 0s and 1s 
 
e.g., Prove that X + XY = X.  
 
 
 
 
 
 
 
e.g., Prove distributivity for “” using other theorems. 
 
 
 
 
 
 
 
 
- two/three variable theorems can be generalized to n variables 
 

 for example, DeMorgan’s theorem 
 
 (A+B+C+D+…) = ABCD… 
 
 (ABCD…) = A+B+C+D… 
 
Note: will often leave out “” operator for convenience. 

 
- literal  primed or unprimed variable 
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- more on DeMorgan’s: 
 
 
 AND + NOT     NAND 
 
 
 
 
 
 
 by DeMorgan’s 
 
 
    NOTs + OR 
 
 
NAND   
 
 
 
 
- similarly, for NOR can show: 
 
 
 
 
 
 
e.g.,   Given F = XYZ + XYZ, find F using DeMorgan’s. 
 
  F =  
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- generalized DeMorgan to get F, given F: 
 
  take dual of function F and complement literals 
 

e.g., Given F = XYZ + XYZ, dual is 
 
 Fdual =  (X+Y+Z)( X+Y+Z) 
 
 F = (X+Y+Z)( X+Y+Z) as expected. 

 
 
Canonical Sum-of-Products and Product-of-Sums Forms 
 
 

XYZ Minterm Maxterm 
000 m0 =  M0 = 
001 m1 = M1 = 
010 m2 = M2 = 
011 m3 = M3 = 
100 m4 = M4 = 
101 m5 = M5 = 
110 m6 = M6 = 
111 m7 = M7 = 

 
 
e.g.,   XYZ F 

000 0 
001 1 
010 0 
011 0 
100 1 
101 0 
110 0 
111 1 
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- canonical sum of products (SOP) form of Boolean function F  

 sum of minterms corresponding to F = 1  
(also called "standard sum of products") 
 

- canonical product of sums (POS) form of Boolean function F  
 product of maxterms corresponding to F = 0  
(also called "standard product of sums") 

 
- sometimes minterm list or maxterm list notation is used: 
 
  F  = m1 + m4 + m7 
   = XYZ(1, 4, 7) 
 
 and F = M0M2M3M5M6 
   =  XYZ (0, 2, 3, 5, 6) 
 
- SOP and POS forms can usually be simplified to minimize  
 literals  no longer “canonical” 
 
  e.g.,  simplified SOP:  F1 = Y + XY + XYZ 
   simplified POS:  F2 = X(Y+Z)(X+Y+Z) 
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(b) Realization of Circuits 
 
Design Objectives 
 
 (1) minimum number of gates 
 (2) minimum number of inputs to a gate 
 (3) minimum propagation time through circuit 
 (4) minimum number of interconnections 
 
 
Boolean Function Input 
 
e.g.,  F = Y + XY + XYZ 
 
 
 
 
 
 
 
 
 
 
 
 
- SOP form leads to 2 levels of logic: 

AND-OR logic   AND gates followed by OR gates  
 (ignoring NOTs and assuming that any number of  
 inputs to a gate is allowed)   

- similarly, POS form leads to 2 levels of logic: 
OR-AND logic  OR gates followed by AND gates 
  (ignoring NOTs and assuming that any number of  
 inputs to a gate is allowed)   
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Truth Table to Gates 
 
e.g., (same as previous example) 
 

XYZ F 
000 1 
001 1 
010 1 
011 0 
100 1 
101 1 
110 1 
111 1 

 
 
 
 
 
 
 
 
 
 
 SOP:  F =  
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Note: using canonical SOP directly to gates often takes many gates 
and gates are large (in this example, 7 input OR gate!) 
 
  large gates can be built using smaller gates 
 
 e.g., 
 
 
 
 
 
 
 
 
 
 
 6 2-input ORs  1 7-input OR, but 3 layers of logic gates  

 longer propagation delay  circuit slower 
 
- in order to minimize circuit, desirable to simplify canonical SOP  
 
- from canonical SOP, using Boolean algebra: 
 
 F  = 
 
 
 
  = 
   
  = 
 
  = 
 
  =          (reduced SOP form) 
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 a lot of work and difficult to know exactly what steps to  
  take 
 
  not guaranteed to find mimimal circuit 
 
   for this example, F = X + Y + Z 
   (easily derived using canonical POS form) 
 
  some standard reduction/minimization/simplification  
  methods exist such as Karnaugh maps for small  
  functions and software packages such as Espresso for  
  larger functions 
 
- any logic function can be implemented using AND, OR, and  
 NOT gates (by starting with SOP or POS forms), but CMOS  
 technology lends itself to efficient implementation of  
 NANDs and NORs 
 
  any logic function can be implemented with exclusively  
  NAND (or NOR) gates 
 
 OR   2 NOTs + NAND  NOR + NOT 
 
 
 
 
 AND   NAND + NOT   2 NOTs + NOR 
 
 
 
 
 NOT   NAND    NOR 
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e.g., 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- similarly all NOR circuit can be derived (most easily for OR-

AND circuit) 
______________________ 
 
Example: Implementing a circuit using NANDs/NORs/NOTs  
 
 

 
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better
 
 
 
 
 final circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
(c) Logic Minimization 
 
- as we have seen, can use Boolean algebra theorems to reduce  
 number and size of gates in a circuit 
  logic minimization or logic simplification 
 
- also, there are sophisticated computer tools for minimization,  
 such as the Espresso algorithm, which can find minimal or  
 near-minimal circuit for most expressions with dozens of  
 inputs and  hundreds of product terms 
 
- generally assume that X is readily available and to use X at gate  
 input has no more cost that using X 
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Karnaugh Maps 
 
- good systematic visual method for minimizing 3 and 4 input  
 Boolean functions 
 
3 input map 
 

YZ F: 
 
 
 
 
 
 
 
e.g., 
 
(1) K-map of F: 
 
 
 
 
 
 
 
 

1 

0 

10 11 01 00 X Note: adjacent 
columns differ 
in only 1 bit 

m0 m1 m3 m2 

 adjacent 
squares differ 
in only 1 bit 

m4 m5 m7 m6 

YZ 
01 11 10 

0 

1 

00 

0 0 1 

1 1 0 

1 

0 

X 
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(2) K-map of F: 
 

YZ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(3) K-map of F: 
 
 
 
 
 
 
 
 
 
 
 

1 

0 

10 11 01 00 X 

0 0 1 0 

1 0 1 1 

YZ 
01 11 10 

0 

1 

00 

0 1 1 

1 1 1 

0 

0 

X 
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- for 3 input K-map: 
  1 square  term with 3 literals 
 2 squares  term with 2 literals 
 4 squares  term with 1 literal 
 
 
4 input map 
 
F: 

00 

01 

10 

11 

m10 m11 

m14 m15 m13 m12 

10 11 01 
YZ 

00 WX 

m9 m8 

m6 m7 m5 

m2 m3 m1 

m4 

m0 

 
 
 
 
 
 
 
 
 
 

 again adjacent squares only differ in 1 bit 
 
e.g., 
 
(1) K-map of F: 
 
 
 
 
           F =  
 
 
 
 

01 

00 

10 

11 

10 11 01 
YZ 

00 WX 

0

1

0 1 

01 

1 

1 

1 0 1 

1 0 1 

1 

1 
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(2) K-map of F: 
 

10 

11 

01 

00 

10 11 01 
YZ 

00 WX 

1 01

00 0

1 

0 

1 0 0 

1 0 1 

0 

1 

 
 
 
 
 
 
 
 
 
 
 
  F =  
 
 
(3) K-map of F: 
 

00 

01 

11 

10 

10 11 01 
YZ 

00 WX 

0

1 

10

11

0 

1 

1 1 0 

0 1 0 

1 

0 

 
 
 
 
 
 
 
 
 
 
 
  F =  
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K-maps for POS 
 
e.g., 
 YZ 

01 11 10  
 
          F =  0 

 
1 

00 

1 0 0 

1 0 1 

1 

1 

X 

 
 
 
 F  = 
 
   
 
 
 
 
 
 
  
 
 
 
 
 
 
 
  
(Note also, F  = 
 
    using K-map for SOP) 
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Don’t Cares 
 
- in some cases, outputs for given inputs can be either “0” or “1”,  
 whichever is convenient for design  “don’t care” 
 

 indicated by “X” in values of truth table and K-map 
 

- “don’t cares” can be exploited to help minimize circuit 
 
e.g., 
 

XYZ F 
000 1 
001 X 
010 1 
011 1 
100 0 
101 0 
110 X 
111 1 

 
 
 
 
 
 
 
 
 
 
 
 YZ 

01 11 10  
 

0 
 
 1 

00 

X 

1 1 

0 

X 1 

1 0 

X 

 
 
 
 
  F  =  
 

(Compare to XZ + YZ if “don’t cares” assumed to be “0”.) 
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Multiple Output Minimization 
 
- in many cases, there are multiple circuit outputs and considering  
 them together can result in fewer gates 
 
e.g., F = XY + XZ + YZ 
 G = XY + XYZ 
 H = XYZ + XZ 
 
  implemented independently: 
 
  5 2-input ANDs 
  2 3-input ANDs 
  2 2-input ORs 
  1 3-input OR 
 
  implemented together: 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 2-input ANDs (+1) 
  0 3-input ANDs (2) 
  2 2-input ORs 
  1 3-input OR 
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(d) Combinational Logic Design Examples 
 
Summary of Combinational Logic Design 
 
(1) Inputs  

 wording, truth table, Boolean function, K-map 
(2) Objectives  

 minimize # and size of gates, minimize timing delay 
(3) Constraints 
  NANDs only, maximum timing delays, gate driving  
  capabilities, limitations on gate size 
(4) Tools  

 Boolean algebra, SOP/POS forms, Karnaugh maps (for  
 small circuits with  6 inputs) , Espresso (for large  
 circuits) 

 
Example 1: Temperature Controller 
 
- temperature sensor produces following inputs to controller: 
 

Temperature 4-bit Input Code Action 
<15 0000 
15 0001 
16 0010 

heat on, fan on high 

17 0011 
18 0100 
19 0101 

heat on, fan on low 

20 0110 heat off, AC off 
21 0111 
22 1000 
23 1001 
24 1010 
25 1011 

>25 1100 

AC on 
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- controller should control furnace/AC unit with 3 outputs with the  
 objective of keeping the temperature at 20: 
 
 H (heat+fan on/off) 1  on, 0  off 
 F (fan low/high)  0  low, 1  high 
 C (AC on/off)  1  on, 0  off  
 
 
Design a NAND-only circuit to implement the controller logic. 
 
 
 
 
 
 
 
 WXYZ H F C 

0000    
0001    
0010    
0011    
0100    
0101    
0110    
0111    
1000    
1001    
1010    
1011    
1100    
1101    
1110    
1111    
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H: 

00 

01 

11 

10 

10 11 01 
YZ 

00 WX 

  

   

 

 

   

   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  H =  
 
 
F: 

10 

11 

01 

00 

10 11 01 
YZ 

00 WX 

   

   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  F =  
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C: 

10 

11 

01 

00 

10 11 01 
YZ 

00 WX 

   

   

 

 

 
 
 
 
 
 
 
 
 
 
 
  C =  
 
Resulting circuit using NANDs only: 
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Example 2: 2-out-of-5 Encoding 
 
- 2-out-of-5 encoder encodes digits as follows: 

 
 
 
 
 
 (Aside: What is value of 2-out- 
  of-5 encoding?) 
 

Design a logic circuit to convert a 
binary representation of a digit to 
 a 2-out-of-5 code. 

 
 

Digit Code 
0 11000 
1 00011 
2 00101 
3 00110 
4 01001 
5 01010 
6 01100 
7 10001 
8 10010 
9 10100 

 
WXYZ A B C D E 

0000      
0001      
0010      
0011      
0100      
0101      
0110      
0111      
1000      
1001      
1010      
1011      
1100      
1101      
1110      
1111      

Truth table: 
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A:      
 
 
 
 
 
 
 
 
 
 A =  
 
B: 
 
 
 
 
 
 
 
 
 

B = 

10 

11 

01 

00 

10 

11 

01 

00 

10 

11 

01 

00 

10 11 01 
YZ 

00 WX 

10 11 01 
YZ 

00 WX 

10 11 01 
YZ 

00 WX 

   

   

 

 

   

   

 

 

   

   

 

 

 
C: 
 
 
 
 
 
 
 
 
 
 C =  

 Combinational Logic Design - 24 



ENGI 3861 – Digital Logic 

D:      
 
 
 
 
 
 
 
 
 
 D =  

10 

11 

01 

00 

10 

11 

01 

00 

10 11 01 
YZ 

00 WX 

10 11 01 
YZ 

00 WX 

   

   

 

 

   

   

 

 

 
E: 
 
 
 
 
 
 
 
 
 

E = 
 
 
Draw circuit. Be sure to share gates where possible across multiple 
outputs. 
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Example 3: Weathervane 
 
Design a logic circuit which takes four binary inputs indicating 
north, east, south, and west wind components (i.e., N = 1 indicates 
a component of wind blowing north) and produces an output of “1” 
when the wind direction is northeast or southwest. 
 
Note: N = S = 1 and E = W = 1 are not possible. 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

F =  
 
 
   Not surprising! 
 

NESW F 
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  

10 

11 

01 

00 

10 11 01 
SW 

00 

   

   

 

 

NE 

 
 
Compare to result based on SOP and not taking into account “don’t 
cares”: 
 

F =  
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