
ENGI 3861 – Digital Logic

II. COMBINATIONAL LOGIC DESIGN

Combinational Logic  output of digital system is only dependent
on current inputs (i.e., no memory)

(a) Boolean Algebra

- developed by George Boole in 1850s

- algebra defined on a set of 2 elements, {0, 1}, with binary

operators multiply (AND), add (OR), and invert (NOT):

 XY  X AND Y

 X+Y  X OR Y
 __
 X or X  NOT (X)

- Boolean algebra theorems:

One Variable Theorems
Label “” “+”

Identities X1 = X X+0 = X
Null elements X0 = 0 X+1 = 1
Idempotency XX = X X+X = X
Complements XX = 0 X+X = 1
Involution (X) = X

Two/Three Variable Theorems
Commutativity XY = YX X+Y = Y+X
Associativity (XY)Z = X(YZ) (X+Y)+Z = X+(Y+Z)
Distributivity (X+Y)(X+Z) = X+YZ XY+XZ = X(Y+Z)
DeMorgan’s (XY) = X+Y (X+Y) = XY

 Combinational Logic Design - 1

ENGI 3861 – Digital Logic

- duality:
  to get “+” column from “” column (and vice versa),
 swap “+” with “” operators and swap 0s and 1s

e.g., Prove that X + XY = X.

e.g., Prove distributivity for “” using other theorems.

- two/three variable theorems can be generalized to n variables

 for example, DeMorgan’s theorem

 (A+B+C+D+…) = ABCD…

 (ABCD…) = A+B+C+D…

Note: will often leave out “” operator for convenience.

- literal  primed or unprimed variable

 Combinational Logic Design - 2

ENGI 3861 – Digital Logic

- more on DeMorgan’s:

 AND + NOT  NAND

 by DeMorgan’s

 NOTs + OR

NAND 

- similarly, for NOR can show:

e.g., Given F = XYZ + XYZ, find F using DeMorgan’s.

 F =

 Combinational Logic Design - 3

ENGI 3861 – Digital Logic

- generalized DeMorgan to get F, given F:

  take dual of function F and complement literals

e.g., Given F = XYZ + XYZ, dual is

 Fdual = (X+Y+Z)(X+Y+Z)

 F = (X+Y+Z)(X+Y+Z) as expected.

Canonical Sum-of-Products and Product-of-Sums Forms

XYZ Minterm Maxterm
000 m0 = M0 =
001 m1 = M1 =
010 m2 = M2 =
011 m3 = M3 =
100 m4 = M4 =
101 m5 = M5 =
110 m6 = M6 =
111 m7 = M7 =

e.g., XYZ F

000 0
001 1
010 0
011 0
100 1
101 0
110 0
111 1

 Combinational Logic Design - 4

ENGI 3861 – Digital Logic

- canonical sum of products (SOP) form of Boolean function F

 sum of minterms corresponding to F = 1
(also called "standard sum of products")

- canonical product of sums (POS) form of Boolean function F
 product of maxterms corresponding to F = 0
(also called "standard product of sums")

- sometimes minterm list or maxterm list notation is used:

 F = m1 + m4 + m7
 = XYZ(1, 4, 7)

 and F = M0M2M3M5M6
 =  XYZ (0, 2, 3, 5, 6)

- SOP and POS forms can usually be simplified to minimize
 literals  no longer “canonical”

 e.g., simplified SOP: F1 = Y + XY + XYZ
 simplified POS: F2 = X(Y+Z)(X+Y+Z)

 Combinational Logic Design - 5

ENGI 3861 – Digital Logic

(b) Realization of Circuits

Design Objectives

 (1) minimum number of gates
 (2) minimum number of inputs to a gate
 (3) minimum propagation time through circuit
 (4) minimum number of interconnections

Boolean Function Input

e.g., F = Y + XY + XYZ

- SOP form leads to 2 levels of logic:

AND-OR logic  AND gates followed by OR gates
 (ignoring NOTs and assuming that any number of
 inputs to a gate is allowed)

- similarly, POS form leads to 2 levels of logic:
OR-AND logic  OR gates followed by AND gates
 (ignoring NOTs and assuming that any number of
 inputs to a gate is allowed)

 Combinational Logic Design - 6

ENGI 3861 – Digital Logic

Truth Table to Gates

e.g., (same as previous example)

XYZ F
000 1
001 1
010 1
011 0
100 1
101 1
110 1
111 1

 SOP: F =

 Combinational Logic Design - 7

ENGI 3861 – Digital Logic

Note: using canonical SOP directly to gates often takes many gates
and gates are large (in this example, 7 input OR gate!)

  large gates can be built using smaller gates

 e.g.,

 6 2-input ORs  1 7-input OR, but 3 layers of logic gates

 longer propagation delay  circuit slower

- in order to minimize circuit, desirable to simplify canonical SOP

- from canonical SOP, using Boolean algebra:

 F =

 =

 =

 =

 = (reduced SOP form)

 Combinational Logic Design - 8

ENGI 3861 – Digital Logic

 a lot of work and difficult to know exactly what steps to
 take

  not guaranteed to find mimimal circuit

  for this example, F = X + Y + Z
 (easily derived using canonical POS form)

  some standard reduction/minimization/simplification
 methods exist such as Karnaugh maps for small
 functions and software packages such as Espresso for
 larger functions

- any logic function can be implemented using AND, OR, and
 NOT gates (by starting with SOP or POS forms), but CMOS
 technology lends itself to efficient implementation of
 NANDs and NORs

  any logic function can be implemented with exclusively
 NAND (or NOR) gates

 OR 2 NOTs + NAND NOR + NOT

 AND NAND + NOT 2 NOTs + NOR

 NOT NAND NOR

 Combinational Logic Design - 9

ENGI 3861 – Digital Logic

e.g.,

- similarly all NOR circuit can be derived (most easily for OR-

AND circuit)

Example: Implementing a circuit using NANDs/NORs/NOTs



 Combinational Logic Design - 10

ENGI 3861 – Digital Logic

better

 final circuit:

(c) Logic Minimization

- as we have seen, can use Boolean algebra theorems to reduce
 number and size of gates in a circuit
  logic minimization or logic simplification

- also, there are sophisticated computer tools for minimization,
 such as the Espresso algorithm, which can find minimal or
 near-minimal circuit for most expressions with dozens of
 inputs and hundreds of product terms

- generally assume that X is readily available and to use X at gate
 input has no more cost that using X

 Combinational Logic Design - 11

ENGI 3861 – Digital Logic

Karnaugh Maps

- good systematic visual method for minimizing 3 and 4 input
 Boolean functions

3 input map

YZ F:

e.g.,

(1) K-map of F:

1

0

10 11 01 00 X Note: adjacent
columns differ
in only 1 bit

m0 m1 m3 m2

 adjacent
squares differ
in only 1 bit

m4 m5 m7 m6

YZ
01 11 10

0

1

00

0 0 1

1 1 0

1

0

X

 Combinational Logic Design - 12

ENGI 3861 – Digital Logic

(2) K-map of F:

YZ

(3) K-map of F:

1

0

10 11 01 00 X

0 0 1 0

1 0 1 1

YZ
01 11 10

0

1

00

0 1 1

1 1 1

0

0

X

 Combinational Logic Design - 13

ENGI 3861 – Digital Logic

- for 3 input K-map:
 1 square  term with 3 literals
 2 squares  term with 2 literals
 4 squares  term with 1 literal

4 input map

F:

00

01

10

11

m10 m11

m14 m15 m13 m12

10 11 01
YZ

00 WX

m9 m8

m6 m7 m5

m2 m3 m1

m4

m0

 again adjacent squares only differ in 1 bit

e.g.,

(1) K-map of F:

 F =

01

00

10

11

10 11 01
YZ

00 WX

0

1

0 1

01

1

1

1 0 1

1 0 1

1

1

 Combinational Logic Design - 14

ENGI 3861 – Digital Logic

(2) K-map of F:

10

11

01

00

10 11 01
YZ

00 WX

1 01

00 0

1

0

1 0 0

1 0 1

0

1

 F =

(3) K-map of F:

00

01

11

10

10 11 01
YZ

00 WX

0

1

10

11

0

1

1 1 0

0 1 0

1

0

 F =

 Combinational Logic Design - 15

ENGI 3861 – Digital Logic

K-maps for POS

e.g.,
 YZ

01 11 10

 F = 0

1

00

1 0 0

1 0 1

1

1

X

 F =

(Note also, F =

 using K-map for SOP)

 Combinational Logic Design - 16

ENGI 3861 – Digital Logic

Don’t Cares

- in some cases, outputs for given inputs can be either “0” or “1”,
 whichever is convenient for design  “don’t care”

 indicated by “X” in values of truth table and K-map

- “don’t cares” can be exploited to help minimize circuit

e.g.,

XYZ F
000 1
001 X
010 1
011 1
100 0
101 0
110 X
111 1

 YZ

01 11 10

0

 1

00

X

1 1

0

X 1

1 0

X

 F =

(Compare to XZ + YZ if “don’t cares” assumed to be “0”.)

 Combinational Logic Design - 17

ENGI 3861 – Digital Logic

Multiple Output Minimization

- in many cases, there are multiple circuit outputs and considering
 them together can result in fewer gates

e.g., F = XY + XZ + YZ
 G = XY + XYZ
 H = XYZ + XZ

  implemented independently:

 5 2-input ANDs
 2 3-input ANDs
 2 2-input ORs
 1 3-input OR

  implemented together:

 6 2-input ANDs (+1)
 0 3-input ANDs (2)
 2 2-input ORs
 1 3-input OR

 Combinational Logic Design - 18

ENGI 3861 – Digital Logic

(d) Combinational Logic Design Examples

Summary of Combinational Logic Design

(1) Inputs

 wording, truth table, Boolean function, K-map
(2) Objectives

 minimize # and size of gates, minimize timing delay
(3) Constraints
  NANDs only, maximum timing delays, gate driving
 capabilities, limitations on gate size
(4) Tools

 Boolean algebra, SOP/POS forms, Karnaugh maps (for
 small circuits with  6 inputs) , Espresso (for large
 circuits)

Example 1: Temperature Controller

- temperature sensor produces following inputs to controller:

Temperature 4-bit Input Code Action
<15 0000
15 0001
16 0010

heat on, fan on high

17 0011
18 0100
19 0101

heat on, fan on low

20 0110 heat off, AC off
21 0111
22 1000
23 1001
24 1010
25 1011

>25 1100

AC on

 Combinational Logic Design - 19

ENGI 3861 – Digital Logic

- controller should control furnace/AC unit with 3 outputs with the
 objective of keeping the temperature at 20:

 H (heat+fan on/off) 1  on, 0  off
 F (fan low/high) 0  low, 1  high
 C (AC on/off) 1  on, 0  off

Design a NAND-only circuit to implement the controller logic.

 WXYZ H F C

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 Combinational Logic Design - 20

ENGI 3861 – Digital Logic

H:

00

01

11

10

10 11 01
YZ

00 WX

 H =

F:

10

11

01

00

10 11 01
YZ

00 WX

 F =

 Combinational Logic Design - 21

ENGI 3861 – Digital Logic

C:

10

11

01

00

10 11 01
YZ

00 WX

 C =

Resulting circuit using NANDs only:

 Combinational Logic Design - 22

ENGI 3861 – Digital Logic

Example 2: 2-out-of-5 Encoding

- 2-out-of-5 encoder encodes digits as follows:

 (Aside: What is value of 2-out-
 of-5 encoding?)

Design a logic circuit to convert a
binary representation of a digit to
 a 2-out-of-5 code.

Digit Code
0 11000
1 00011
2 00101
3 00110
4 01001
5 01010
6 01100
7 10001
8 10010
9 10100

WXYZ A B C D E

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Truth table:

 Combinational Logic Design - 23

ENGI 3861 – Digital Logic

A:

 A =

B:

B =

10

11

01

00

10

11

01

00

10

11

01

00

10 11 01
YZ

00 WX

10 11 01
YZ

00 WX

10 11 01
YZ

00 WX

C:

 C =

 Combinational Logic Design - 24

ENGI 3861 – Digital Logic

D:

 D =

10

11

01

00

10

11

01

00

10 11 01
YZ

00 WX

10 11 01
YZ

00 WX

E:

E =

Draw circuit. Be sure to share gates where possible across multiple
outputs.

 Combinational Logic Design - 25

ENGI 3861 – Digital Logic

 Combinational Logic Design - 26

Example 3: Weathervane

Design a logic circuit which takes four binary inputs indicating
north, east, south, and west wind components (i.e., N = 1 indicates
a component of wind blowing north) and produces an output of “1”
when the wind direction is northeast or southwest.

Note: N = S = 1 and E = W = 1 are not possible.

F =

 Not surprising!

NESW F
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

10

11

01

00

10 11 01
SW

00

NE

Compare to result based on SOP and not taking into account “don’t
cares”:

F =

	II. COMBINATIONAL LOGIC DESIGN

