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Abstract—In this paper, we propose a new approach of using
the stair matrix for uplink data detection in massive MIMO
systems. We first demonstrate the applicability of the proposed
method by showing that the probability (that the convergence
conditions are met) will approach one as long as sufficient large
number of antennas are equipped at the base station. We then
propose an iterative method to perform data detection and show
that a much improved performance can be achieved with the
computational complexity remaining at the same level of existing
iterative methods where the diagonal matrix is adopted. Perfor-
mance evaluation is conducted in terms of the probability that
the convergence conditions are met, the normalized mean-square
error of the Neumann series expansion to approach the matrix
inverse, the residual estimation error to approach the linear
ZF/MMSE detection, and the system bit error rate. Numerical
simulations show significant performance enhancement of using
the stair matrix over the diagonal matrix in all performance
aspects.

Index Terms—Massive MIMO; Stair Matrix; Iterative Method;
Convergence Condition.

I. INTRODUCTION

The development and successful applications of multiple-
input multiple-output (MIMO) systems in modern wireless
communications have brought the bright prospective of mas-
sive MIMO techniques in future 5G mobile communication
systems [1]–[3]. It is foreseeable that massive MIMO, to-
gether with the millimeter wave frequency band [4], has
been a promising candidate to meet the high rate, low la-
tency 5G system requirements. Due to the huge potential
multiplexing and diversity gain over the small-scale MIMO
and single-antenna systems, massive MIMO can boom the
system spectrum and energy efficiency [1], [5]–[7]. Along
with the benefits of massive MIMO, however, the cost of
high computational complexity required in signal processing
(data detection, precoding, etc.) increases, which prohibits the
application of the optimal detection methods, such as the
maximum likelihood (ML), and maximum a posteriori (MAP)
detection, in realization.

To achieve good tradeoff between the system performance
and the computational complexity, linear detection (and pre-
coding) methods, such as zero-forcing (ZF) and minimum
mean-square error (MMSE), have been considered in real-
ization [8]–[15]. It has also been demonstrated that with
these linear detection methods, the near-optimal performance
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can be achieved in massive MIMO systems, especially when
the number of antennas at base station (denoted by NB) is
much greater than the number of user equipment (denoted
by NU ) in service. However, as we know, ZF/MMSE based
data detection schemes experience matrix inversion, which
is computational costly (almost O (N3), where N is the
matrix size) in implementation. Therefore, the investigation
of reducing computational complexity but still maintaining
near-optimal system performance of ZF/MMSE based data
detection schemes has emerged recently [8]–[15]. Generally,
all those schemes can be summarized in two categories: the
first one is to approach matrix inversion, and the other is to
solve linear equations with iterative methods.

The first category is to approach the matrix inversion [8]–
[10]. For example, in [8], the authors attempt to introduce Neu-
mann series expansion to avoid the matrix inversion in linear
MMSE detection. It has been shown that when the number
of antennas at base station is much greater than the number
of user equipment, the orders required for Neumann series
expansion can be as few as 3 (for example, r = NB/NU ⩾ 16).
In [9], the probability of the convergence condition that using
the diagonal matrix in Neumann series expansion has been
comprehensively discussed. However, Neumann series expan-
sion suffers from matrix multiplications, and the computational
complexity is comparable to the matrix inversion algorithm
when the expansion order is more than two. In order to speed
up the convergence rate, diagonal banded Newton iteration
based matrix inversion approach is studied in [10], where
the Newton iteration structure is used. Actually, the results
after P iterations in Newton iteration can be seen as the
Neumann series expansion of the order 2P −1 [10]. Inevitably,
matrix multiplications are involved in diagonal banded Newton
iteration based matrix inversion approach, and the iterations
are limited to 2 for computational complexity consideration.
In summary, the methods that are to approach matrix inversion
suffer from high computational complexity due to the matrix
multiplications and the slow convergence rate when the ratio
r is not sufficiently large.

The second category is to solve linear equations with
iterative methods [11]–[15]. The basic idea of these methods is
to transform the matrix inversion problem into solving linear
equations. To solve the linear equations, an initial estimation
is provided. Then following an iterative structure to converge,
the final output is provided as the solutions to linear equations.
For example, in [11], the Jacobi method is adopted, and
by following the Jacobi iterative structure, the estimation
eventually approaches the MMSE estimation. The Richardson
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iteration in massive MIMO uplink data detection has been
studied in [12], and the authors have demonstrated that the
iterative structure can converge even with zero initialization.
However, as pointed out in [13], [14], the convergence rate for
both Jacobi method and Richardson iteration is slow, hence
quite a few iterations are required for convergence. The appli-
cation of Gauss-Seidel method to massive MIMO uplink data
detection is studied in [13], and the convergence performance
can be greatly improved. By providing an initial estimation
that is close to the MMSE estimation, the joint steepest-
decent and Jacobi method based data detection is proposed
in [14], and the iterations are greatly reduced. In [15], the
authors formulate the MMSE estimation as a minimization
problem, and use the conjugate gradient to calibrate the next
estimation. However, conjugate gradient-based data detection
scheme involves many division operations, which is also
computational costly. Compared to the first category which is
to approach matrix inversion, solving linear equations with it-
erative methods is of less complexity due to the replacement of
matrix multiplications with matrix-vector products. However,
as summarized in [14], the overall computational complexity
of the iterative methods, including the computations in both
the initialization and iteration, is still high. It is worth pointing
out that the convergence rate of the existing iterative methods
can be speeded up by using preconditioning [16]. The potential
direction to further reduce the computational complexity can
be finding an iterative method that requires less computation
in initialization and less iterations for convergence [17].

In both the previous mentioned two categories of data de-
tection schemes, we note that most proposals in existing litera-
tures mainly utilize the diagonal matrix in the development. In
[8], [9], the applicability of using diagonal matrix to massive
MIMO uplink data detection has been demonstrated. However,
as we will show later, we find some limitations for using
diagonal matrix. First of all, in the massive MIMO system
configuration with small ratio of r = NB/NU , the convergence
rate of using the diagonal matrix is slow. Alternatively, a
few iterations (or orders in Neumann series expansion) are
required to provide near-optimal system performance. Besides,
the convergence conditions, which are critical for the both
data detection schemes mentioned above, are met with a low
probability when r is small. That is to say, in some cases, the
diagonal matrix may not be used to converge.

The motivation of this paper originates from achieving a
better tradeoff between computational complexity and system
performance in massive MIMO uplink data detection. We
propose to use the stair matrix in the development. As far as
we know, the applications of stair matrix in massive MIMO
systems have not been studied. The contributions of this paper
are summarized as follows:

● We show that when NB grows to infinite, the probability
that the convergence conditions are met approaches 1. As
the antennas at base station in Massive MIMO systems
can be hundreds, this conclusion demonstrates the appli-
cability of the stair matrix in massive MIMO systems;

● We demonstrate the proposed iterative method with the
use of the stair matrix has the same level of the com-
putational complexity compared to the existing iterative

methods where the diagonal matrix is applied;
● We show that by using the stair matrix, the probability

that the convergence conditions are met can be greatly
improved in a comparatively low r region, and the cu-
mulative distribution function of the maximum eigenvalue
of the convergence matrix indicates that the convergence
rate can be speeded up by using the stair matrix;

● We demonstrate that by using the stair matrix, the mean-
square error of the truncated Neumann series expansion
to approach matrix inverse, can be greatly reduced;

● We show that the residual estimation error of the proposed
iterative method using the stair matrix is much less than
that of the Jacobi method where the diagonal matrix is
applied;

● We compare the system BER performance with the pro-
posed iterative method, and show that the performance
improvement over the use of the diagonal matrix is
significant.

The rest of this paper is organized as follows. Section
II provides the system model, including the massive MIMO
structure and the preliminary work of linear ZF/MMSE de-
tection. In section III, the introduction to stair matrix and its
applicability in massive MIMO will be presented. The im-
plementation of stair matrix in massive MIMO data detection
with iterative method is presented in section IV. In section V,
we conduct the numerical simulations and present the results
and discussion. Finally, the conclusions are drawn in section
VI.

Notations: Throughout the paper, the lowercase and up-
percase bold symbols denote the column vector and matrix,
respectively. (⋅)

T, (⋅)
H, and (⋅)

−1 are reserved for matrix
transpose, conjugate transpose, and inverse, respectively. C
and N are reserved for the sets of the complex and natural
numbers, respectively. ∥A∥F and ∥a∥2 are the Frobenius-norm
of a matrix A and the `2-norm of a vector a. E{⋅} and cov{⋅, ⋅}
denote the expectation, and covariance operation. exp (⋅) and
ln (⋅) denote the exponential and natural logarithmic functions,
respectively. IL is reserved for the size L identity matrix
and el represents the lth column of IL; diag{a} converts a
column vector a to a diagonal matrix and diag{A} obtains
the diagonal elements in a matrix A to form a column vector.
ρ (A) is the spectral radius of the matrix A.

II. SYSTEM MODEL

We consider the massive MIMO uplink with NB antennas
at base station to simultaneously serve NU single-antenna user
equipment. The NB bitstream from each user is first encoded,
then interleaved, and fed into digital modulator. The modulated
symbols are transmitted into massive MIMO channel, and the
received signal vector at base station can be expressed as

y = Hx + z, (1)

where y = [y1, y2,⋯, yNB
]

T is a complex-valued NB × 1 vec-
tor, with ym denoting the received signal from the m-th receiv-
ing antenna. x = [x1, x2,⋯, xNU

]
T with the transmitted sym-

bol of user u denoted by xu. H = [h1,h2,⋯,hNU
] denotes

the channel matrix with hu ∈ CNB×1 where each entry is inde-
pendent and identically distributed (i.i.d.), modeled as the flat
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Rayleigh fading channel [1], [5], [13]. z = [z1, z2,⋯, zNB
]

T

is the noise vector, satisfying E{zzH} = σ2
zINB

with each
entry modeled as zero-mean complex Gaussian circularly
symmetric (ZMCGCS) random variable. It is worth noting
that in frequency selective fading channels, by applying the
OFDM/SC-FDMA techniques, the signal model expressed in
(1) is applied to each subcarrier.

A. Linear MMSE Data Detection

The multi-user data detector at the base station is to com-
pute the a posteriori log likelihood ratio (LLR) of the bits
associated with the modulated symbols. After the knowledge
of the channel matrix (note that the channel matrix is obtained
through channel estimator, where time domain and/or frequen-
cy domain training pilots are used for the channel estimation
[18], [19]), the well-known linear MMSE data detection can
be given by

x̂ = (HHH + σ2
zINU

)
−1

HHy = W−1yMF, (2)

where yMF = HHy can be seen as the matched-filter output,
and the MMSE equalization matrix W can be expressed as

W = G + σ2
zINU

, (3)

where G = HHH is the Gram matrix. It is worth noting that
in high signal-to-noise ratio (SNR) region, Equation (2) can
be reduced to

x̂ = G−1yMF, (4)

which is the linear ZF data detection scheme, where the noise
component is not considered in the equalization process.

To obtain the a posteriori LLR of the bits associated with
the modulated symbols, we write the estimation in Equation
(2) as

x̂u = eH
ux̂ = ρuxu + ξu, (5)

where the equivalent channel gain ρu and the a posteriori
noise-plus-interference (NPI) ξu can be given by

ρu = eH
uW−1Geu, (6)

ξu = eH
uW−1G (x − xueu) + eH

uW−1HHz. (7)

The covariance of the NPI v2u = cov (ξu, ξu) is given by

v2u = eH
uW−1GGW−1eu + σ2

ze
H
uW−1GW−1eu − ρ2u

= ρu − ρ
2
u.

(8)

Given Equation (5), (6), and (8), we derive the max-log
approximated LLR of the bits associated with xu, given by

L (bu,k) = γu (min
s∈χ0

k

∣
x̂u
ρu

− s∣
2

− min
s′∈χ1

k

∣
x̂u
ρu

− s′∣
2

), (9)

where bu,k is the k-th mapping bit associated with xu; γu =

ρ2u/v
2
u is the a posteriori signal-to-noise-plus-interference ratio

(SINR); χbk ≜ {s ∣s ∈ χ, qk = b} denotes the subset of χ, where
the k-th mapping bit associated with the constellation symbol
s, i.e. qk, is b; χ is the constellation symbols set. After data
detection of all users, the LLRs are fed into the soft-input
channel decoder for decoding process.

B. Neumann Series Expansion

In the previous subsection, we note that the matrix inverse
operations are involved in linear MMSE/ZF data detection.
The matrix inverse is computational costly especially when the
matrix size is large. One of the promising practical solutions
to address the matrix inverse issue is to employ the Neumann
series expansion [8]. The complete Neumann series expansion
of the matrix inverse W−1 is given by

W−1
=

∞
∑
l=0

(X−1
(X −W))

l
X−1, (10)

with the following condition satisfied:

lim
l→∞

(I −X−1W)
l
= 0. (11)

When the high order is ignored, the truncated Neumann series
expansion can be expressed as

W−1
L =

L−1
∑
l=0

(X−1
(X −W))

l
X−1. (12)

Generally, when we select the matrix X that is close to W,
the L order expansion W−1

L in Equation (12) can be close to
W−1. Fortunately, in massive MIMO systems, the gram matrix
G is diagonally dominant; hence the diagonal matrix, i.e., D =

diag{W} can be selected as X, then the approximation of
W−1 is given by

W−1
L =

L−1
∑
l=0

(D−1
(D −W))

l
D−1. (13)

In [8], the authors have provided the upper bound of the
residual estimation error using W−1

L to approach W−1, i.e.,

∥(W−1
−W−1

L )yMF∥
2
⩽ ∥I −D−1W∥

L

F
∥x̂∥2, (14)

where ∥A∥F and ∥a∥2 are the Frobenius norm of a matrix
A and the `2-norm of a vector a. From Equation (14), we
can see that the upper bound of residual estimation error
decreases as the increase of the expansion order and NB . In
other words, if the number of antennas at the base station
is sufficiently large, even with a small order expansion, the
residual estimation error will be small. Particularly, when
NB is sufficient large and the expansion order L ⩽ 2, the
computation required for the Neumann series expansion will
be much reduced, compared to the matrix inverse operations.
These two factors provide the evidence to support the usage of
the diagonal matrix in Neumann series expansion for massive
MIMO systems.

C. Jacobi Method

In Neumann series expansion, if the expansion order is
greater than 2, the matrix multiplication operations are in-
volved; hence, the computational complexity is comparable
with that of the matrix inverse operations. On the other hand,
as we can see in Equation (14), if NB is not sufficiently large,
with the expansion order that is less than 2, the residual esti-
mation error is still considerable. These two factors limit the
applications of diagonal matrix in Neumann series expansion.
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To avoid the matrix multiplication operations, but maintain
a reasonable orders of expansion, we can use the iterative
methods. To be specific, we first rewrite the MMSE estimation
in Equation (2) as

Wx̂ = yMF. (15)

By transforming the matrix inverse problem into the format
of Equation (15), we can adopt the iterative methods to solve
linear equations. Generally, the iterative methods follow the
following process:

(1) Provide an initial estimation;
(2) Follow an iterative structure to obtain the next esti-

mation;
(3) When the estimation converges, output the final

estimation.
In Jacobi method, we can have the initial estimation as

x(0) = D−1yMF, (16)

which is the common selection in most of the existing litera-
ture. The iterative structure is given by

x(i+1) = D−1 ((D −W)x(i) + yMF)

= x(i) −D−1Wx(i) +D−1yMF,
(17)

where x(i) denotes the i-th estimation. According to the iter-
ative structure in Equation (17), and use the initial estimation
given by Equation (16), we can derive the i-th estimation given
by

x(i) =
i

∑
l=0

(D−1
(D −W))

l
D−1yMF. (18)

That is to say, by selecting the initial estimation given by (16),
after i iterations following Jacobi iterative structure, we have
the same estimation results as the (i + 1)-th order expansion
in Neumann series. Therefore, the convergence conditions, the
residual estimation error, and the estimation results are the
same as those in the previous subsection. However, as we can
see from Equation (16) to Equation (17), only matrix-vector
product operations are involved; therefore, Jacobi method has
low complexity compared to the Neumann series expansion
with the same iterations (or orders in Neumann series).

III. STAIR MATRIX AND ITS APPLICABILITY TO MASSIVE
MIMO SYSTEMS

In this section, we will first introduce the stair matrix and
its properties. And then, we will demonstrate the applicability
of the stair matrix to massive MIMO systems.

A. Stair Matrix and its Properties

In an N×N matrix A, if its entry A(m,n) = eHmAen, m,n =

1,2,⋯,N , satisfies A(m,n) = 0 where n ∉ [m − 1,m,m + 1],
we then call it as a tridiagonal matrix, denoted by A =

tridiag (A(m,m−1),A(m,m),A(m,m+1)). A special tridiagonal
matrix is defined as a stair matrix if one of the following
conditions is satisfied [20], [21]:

(I) A(m,m−1) = 0, A(m,m+1) = 0, where m = 2k − 1,
k = 1,2,⋯, ⌊(N + 1)/2⌋;

Algorithm 1: Compute the Inverse of a Stair Matrix
Input: The Stair Matrix A = stair (A

(m,m−1),A(m,m),A(m,m+1))

Output: A−1
= B = stair (B

(m,m−1),B(m,m),B(m,m+1))

1.for m = 1 ∶ 1 ∶ N
2. B

(m,m) = 1/A(m,m)
3. end
4. for m = 2 ∶ 2 ∶ 2 ⌊N/2⌋
5. B

(m,m−1) = −A(m,m−1)B(m,m)B(m−1,m−1);
6. B

(m,m+1) = −A(m,m+1)B(m,m)B(m+1,m+1);
7. end

Return B.

(II) A(m,m−1) = 0, A(m,m+1) = 0, where m = 2k, k =

1,2, ⌊N/2⌋.
In accordance, a stair matrix is of type I if the condition (I)
is satisfied and is of type II if the condition (II) is satisfied.
For example, a 5 × 5 stair matrix has the following forms:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

×

× × ×

×

× × ×

×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× ×

×

× × ×

×

× ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The previous one is of type I and the latter one is of type II.
Next, we provide the following properties of the stair matrix
in Corollary 1 and 2.

Corollary 1: Let A be a stair matrix. Then AH is also a
stair matrix. In addition, if A is of type I, then AH is of type
II, and vice verse.

Proof: Using the definition, it is straightforward to obtain
Corollary 1.

Corollary 1 shows that the properties of the stair matrix
of type I and type II are almost the same; therefore, we
only consider the stair matrix of type I hereafter except for
specification.

Corollary 2: Let A be a stair matrix. A is nonsingular if
and only if Am,m, m = 1,2,⋯,N , is nonsingular. Further-
more, the inverse of A, i.e., A−1 is also a stair matrix of
the same type, given by A−1 = D−1 (2D −A)D−1, where
D = diag (A).

Proof: Since det (A) =
N

∏
m=1

A(m,m), we can see that

A is nonsingular if and only if A(m,m), m = 1,2,⋯,N , is
nonsingular.

Following the matrix multiplications, we can obtain that
D−1 (2D −A)D−1A = IN . Moreover, we can easily derive
that A−1 is also a stair matrix and of the same type as A.

Without loss of generalness, we denote a stair matrix of
type I as A = stair (A(m,m−1),A(m,m),A(m,m+1)). From
Corollary 2, we have the Algorithm 1 to obtain A−1. It is clear
from Algorithm 1 that the complexity to obtain the inverse
of a stair matrix is O (N), which is the same order of the
computation of D−1.

B. Using Stair Matrix in Neumann Series Expansion

We define the stair matrix S = stair (Gu,u−1,Gu,u,Gu,u+1),
derived from Gram matrix G as

S(u,v) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

G(u,v),
G(u,v),
0,

u ∈ U1, v = u;
u ∈ U2, v ∈ {u − 1, u, u + 1};
otherwise,
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B(u,v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
G(u,v)
G(u,u)

, u ∈ U1, v ≠ u;

0, u ∈ U1, v = u;

−
G(u,v)
G(u,u)

+
G(u,u−1)⋅G(u−1,v)
G(u,u)G(u−1,u−1)

+
G(u,u+1)⋅G(u+1,v)
G(u,u)G(u+1,u+1)

, u ∈ U2, v ≠ u;
G(u,u−1)⋅G(u−1,u)
G(u,u)G(u−1,u−1)

+
G(u,u+1)⋅G(u+1,u)
G(u,u)G(u+1,u+1)

, u ∈ U2, v = u.

(22)

where U ≜ {n∣n ∈ N, n ⩽ NU}; U1 and U2 are subsets of
U, defined as U1 ≜ {n∣n ∈ U, n = 2k − 1, k ∈ N}, and U2 ≜

{n∣n ∈ U, n = 2k, k ∈ N}, respectively.
Applying the stair matrix in Neumann series expansion in

Equation (10), we have 1

G−1
=

∞
∑
k=0

(I − S−1G)
k
S−1, (19)

where X is replaced with the stair matrix S and the Gram
matrix is considered. The convergence condition for Equation
(19) is

lim
k→∞

(I − S−1G)
k
= 0, (20)

or equivalently

ρ (I − S−1G) = λ0 < 1, (21)

where ρ (A) is the spectral radius of the matrix A, and ∣λ0∣ ⩾
∣λ1∣ ⩾ ⋯ ⩾ ∣λNU

∣ denote the NU eigenvalues.
The convergence condition is critical for the application

of the stair matrix in massive MIMO systems. In order to
investigate the spectral radium of I − S−1G, we suppose NU
is odd 2, and define B = I − S−1G, with each entry given
by Equation (22), where Algorithm 1 is used to compute the
matrix inverse of the stair matrix.

We have the following Lemmas:
Lemma 1: B(u,v) is given by Equation (22). For u ∈

U1, v ≠ u and NB > 4, we have

E{∣B(u,v)∣
2
} ⩽

√
A1

B1
, (23)

where A1 and B1 are respectively given by

A1 = 2NB (NB + 1) , (24)

B1 = (NB − 1) (NB − 2) (NB − 3) (NB − 4) . (25)

Proof: See Appendix B.
Lemma 2: B(u,v) is given by Equation (22). For u ∈ U2,

v ∈ {u − 1, u + 1}, and NB > 4, we have

E{∣B(u,v)∣
2
} ⩽

√
A2

B1
, (26)

where B1 is given by Equation (25), and A2 is given by

A2 = 96NB + 4NB (NB − 1) (NB − 2) (NB − 3)

+ 144NB (NB − 1) + 48NB (NB − 1) (NB − 2) ,
(27)

1For illustration consideration, we investigate the stair matrix in linear ZF
detection. However, similar analysis for the stair matrix in linear MMSE detec-
tion is straightforward by following the similar process, and the applicability
can be demonstrated as well.

2When NU is even, the difference in the expression of B is only present
in the last row. However, the general result is also expected.

Proof: See Appendix C.
Lemma 3: B(u,v) is given by Equation (22). For u ∈ U2,

v ∉ {u − 1, u, u + 1}, and NB > 4, we have

E{∣B(u,v)∣
2
} ⩽

¿
Á
ÁÀ12A2A3 + 6A1A2

3 + 24A4 + 48
√
A1A2A3

3

B3
1

(28)
where A1, A2, and B1 are given by Equations (24), (27), and
(25), respectively. A3 and A4 are respectively given by

A3 = 24NB +NB (NB − 1) (NB − 2) (NB − 3)

+ 36NB (NB − 1) + 12NB (NB − 1) (NB − 2) ,
(29)

A4 = NB (NB − 1) (NB − 2)
3
(NB − 3)

3

+ 26NB (NB − 1) (NB − 2)
3
(NB − 3)

2

+ 46NB (NB − 1) (NB − 2)
2
(NB − 3)

2

+ 4NB(NB − 1)
2
(NB − 2)

3
(NB − 3)

+ 220NB (NB − 1) (NB − 2)
3
(NB − 3)

+ 48NB(NB − 1)
2
(NB − 2)

2
(NB − 3)

+ 808NB (NB − 1) (NB − 2)
2
(NB − 3)

+ 128NB(N − 1)
2
(NB − 2) (NB − 3)

+ 832NB (NB − 1) (NB − 2) (NB − 3)

+ 40NB(NB − 1)
2
(NB − 2)

3

+ 600NB (NB − 1) (NB − 2)
3

+ 4NB(NB − 1)
3
(NB − 2)

2

+ 576NB(NB − 1)
2
(NB − 2)

2

+ 3480NB (NB − 1) (NB − 2)
2

+ 64NB(NB − 1)
3
(NB − 2)

+ 2592NB(NB − 1)
2
(NB − 2)

+ 8064NB (NB − 1) (NB − 2)

+ 256NB(NB − 1)
3

+ 4352NB(NB − 1)
2

+ 9888NB (NB − 1)

+ 2304NB .

(30)

Proof: See Appendix D.
Lemma 4: B(u,v) is given by Equation (22). For u ∈ U2,

v = u, and NB > 4, we have

E{∣B(u,u)∣
2
} ⩽

¿
Á
ÁÀ16A3A5

B3
1

, (31)

where A3 and B1 are given by Equations (29) and (25),
respectively. A5 is given by

A5 = 576NB + 24NB (NB − 1) (NB − 2) (NB − 3)

+864NB (NB − 1) + 288NB (NB − 1) (NB − 2) .
(32)
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Proof: See Appendix E.
With the results in Lemma 1 - 4, we have

E{∥B∥
2
F} =

NU

∑
u=1

NU

∑
v=1

E{∣B(u,v)∣
2
}

⩽
N2
U − 1

2

√
A1

B1
+ (NU − 1)

√
A2

B1
+

(NU − 1)

2

¿
Á
ÁÀ16A3A5

B3
1

+
N2
U − 4NU + 3

2

¿
Á
ÁÀ12A2A3 + 6A1A2

3 + 24A4 + 48
√
A1A2A3

3

B3
1

(33)
Apparently, at the right hand side of the inequality (33), as the
power in numerator is much less than that in denominator, we
can derive

lim
NB→∞

E{∥B∥
2
F} = 0. (34)

Applying the Markov’s inequality, we have

Pr{∥B∥
2
F < 1} = 1 −Pr{∥B∥

2
F ⩾ 1} ⩾ 1 − E{∥B∥

2
F} . (35)

As ∥B∥
2
F =

NU−1
∑
i=0

∣λi∣
2, together with the inequality (35), we

can see that with sufficiently large number of antennas at
base station (i.e., NB →∞), the probability that convergence
condition in (21) is satisfied, will approach 1.

Following the similar analysis, we can also demonstrated
that with sufficient large NB , using stair matrix, the probability
that the convergence condition is met will also approach 1 in
the approximation of the linear MMSE estimation.

Hence we demonstrate the applicability of the stair matrix
in massive MIMO systems.

C. Residual Estimation Error

We now investigate the residual estimation error by using
the truncated Neumann series expansion. According to Equa-
tion (12), we have

G−1
L =

L−1
∑
l=0

(S−1 (S −G))
l
S−1. (36)

Replacing G−1 with G−1
L in Equation (4), we have

x̂(L) = G−1
L yMF. (37)

Therefore, the residual estimation error J = ∥x̂(L) − x̂∥
2
, is

bounded as

J = ∥(G−1
−G−1

L )yMF∥
2

= ∥
∞
∑
l=L

(S−1 (S −G))
l
S−1yMF

∥

2

= ∥(S−1 (S −G))
L
G−1yMF

∥
2

⩽ ∥B∥
L
F ∥x̂∥2,

(38)

where the inequality holds since ∥Ax∥2 ⩽ ∥A∥F ∥x∥2. As
NB → ∞, Pr{∥B∥

2
F < 1} → 1. That is to say, the residual

estimation error will approach 0 as indicated by inequality
(38). Inequality (38) also indicates that increasing the trunca-
tion order in Neumann series expansion, the upper bound of
the residual estimation error can be reduced. This evidence,

together with high probability with the convergence condition
to be met, supports the applications of the stair matrix to
massive MIMO systems.

IV. IMPLEMENTATION OF THE STAIR MATRIX IN
ITERATIVE METHOD

Due to the involvement of matrix multiplications, the
truncation order in Neumann series expansion is limited to
three; otherwise, the computational complexity is comparable
with matrix inversion algorithm. Besides, we note that in
existing work, the computation of the LLR is obtained by
utilizing the NPI after the first truncation order in Neumann
series expansion (or first iteration in iterative method). This
implementation, however, causes significant performance loss
when NB is not sufficiently large (or r = NB/NU is not large,
for example, r < 8). In this section, we address these issues in
the application of stair matrix in iterative method.

A. Stair Matrix in Iterative Method

Compared to the linear ZF detection, linear MMSE detec-
tion achieves a better balance in consideration of interference
and noise. Therefore, we will introduce an iterative method to
approach the linear MMSE detection.

To start with, we define the stair matrix S =

stair (W(u,u−1),W(u,u),W(u,u+1)). It is worth noting that
compared to the stair matrix we discussed in previous section,
the diagonal elements in the new stair matrix has increased
by σ2

z according to Equation (3), which brings negligible
computational cost. According to Equation (17), we have

x(i+1) = S−1 ((S −W)x(i) + yMF)

= x(i) − S−1Wx(i) + S−1yMF,
(39)

where x(i) is the i-th estimation.
In accordance, if the initial estimation x(0) is selected as

x(0) = S−1yMF, (40)

following the iterative process in Equation (39), we can derive

x(i) =
i

∑
l=0

(S−1 (S −W))
l
S−1yMF, (41)

which indicates that the iterative method in Equation (39)
can be seen as truncated Neumann series expansion method.
However, in Equation (39), only matrix-vector product is
involved, hence the overall computational complexity is of the
order O (KN2

U), where K denotes the iteration numbers.

B. Computation of the LLR

After the estimation of transmitted vector x, we need to
compute the LLRs of the associated bits for the soft-input
channel decoder. After K iterations, the equivalent channel

gain ρ
(K)
u and the covariance of the NPI ∣v

(K)
u ∣

2
can be

respectively given by

ρ(K)u = eH
uW−1

K Geu, (42)

∣v(K)u ∣
2
= eH

uW−1
K GGW−1

K eu + σ
2
ze

H
uW−1

K GW−1
K eu − ∣ρ(K)u ∣

2

(43)
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Apparently, Equations (42) and (43) requires matrix multipli-
cations if K ≥ 2. Therefore, in [8], [13]–[15], D−1, which is
the first truncation order, is considered for the simplification.
This approximation, however, as we will show in the next
section, has caused a significant performance loss.

As we can see from Equation (8), the exact a posteriori
covariance of the NPI in linear MMSE estimation can be
derived if the equivalent channel gain is obtained. However,
in [8], the authors have claimed that this relationship is not
supported in truncated Neumann series expansion. The main
reason for that claim is attributed to the fact that W−1

K is
far away from W−1 with small K. In previous section, we
introduce the iterative method for detection, and the iteration
numbers can be sufficiently large since the computational
complexity in one iteration is of the order O (N2

U). With
sufficiently large iterations, W−1

K can be quite close to W−1

(we will show this in the next section); hence, we can used
Equation (8) to derive the covariance of the NPI. The next
question is how to maintain low computational complexity to
obtain the equivalent channel gain.

We rewrite the equivalent channel gain in Equation (8) as
ρu = eH

uW−1Geu = 1 − σ2
ze

H
uW−1eu. In addition, we replace

W−1 with W−1
K , leading to

ρ(K)u = 1 − σ2
ze

H
uW−1

K eu. (44)

That is to say, we need obtain the diagonal elements in W−1
K

to compute ρ(K)u .
If NB and r are sufficiently large, the Gram matrix G and

W will become diagonal dominant; therefore, D−1 can be a
good approximation of W−1, and we have the approximation
to ρ(K)u given by

ρ(K)u ≈ 1 − σ2
zD

−1
(u,u), (45)

and ∣v
(K)
u ∣

2
is approximated as

∣v(K)u ∣
2
≈ ρ(K)u (1 − ρ(K)u ) . (46)

As a consequence, the a posteriori SINR is approximated as

γ(K)u ≈
∣ρ
(K)
u ∣

2

∣v
(K)
u ∣

2
=

ρ
(K)
u

1 − ρ
(K)
u

. (47)

ρ
(K)
u and γ(K)u are used in Equation (9) to compute L (bu,k).
It is worth pointing out that although we utilize the diagonal

matrix to estimate the equivalent channel gain, the computation
of γ(K)u in Equation (47) indicates that we try to approach the
SINR in linear MMSE detection to derive the LLRs of the
associated bits. This is quite different from the existing work
[8], [13]–[15], where the SINR after the first iteration (or the
first truncation order in Neumann series expansion method) is
adopted. In fact, as the iterations increase, the covariance of the
NPI will decrease, and our proposed approximation method is
more efficient and accurate. In numerical simulations, we also
validate that our approximation in (45) and (47) outperforms
the approximation in existing work.

To summarize, we present Algorithm 2 for the proposed
iterative method using stair matrix.

Algorithm 2: Proposed Iterative Method Using Stair Matrix
Input: y, H, σ2

z , and Iteration number K;
Output: LLRs of the associated bits L (bu,k).
Initialization:

1.G =HHH, W =G + σ2
zINU

, yMF
=HHy;

2. S = stair (W
(u,u−1),W(u,u),W(u,u+1));

3. Compute S−1 through Algorithm 1, and D−1
= diag (S−1);

4. Initial estimation: x(0) = S−1yMF;
Iteration:

5. for i = 1 ∶ 1 ∶K
6. x(i+1) = S−1 ((S −W)x(i) + yMF

);
7. end

LLR Computation:

8. ρ(K)u = 1 − σ2
zD

−1
(u,u)

, γ(K)u =
ρ
(K)
u

1−ρ
(K)
u

;

9. L (bu,k) = γ
(K)
u

⎛

⎝

min
s∈χ0

k

∣
x̂
(K)
u

ρ
(K)
u

− s∣
2

− min
s′∈χ1

k

∣
x̂
(K)
u

ρ
(K)
u

− s′∣
2
⎞

⎠

.

Return L (bu,k).

Fig. 1. Cumulative distribution function of the maximum eigenvalue NU = 25.

C. Computational Complexity Analysis

We consider the number of real number multiplication-
s/divisions to evaluate the computational complexity. In ini-
tialization steps, the computation of W and yMF requires
2NBN

2
U and 4NBNU real number multiplications, respec-

tively. According to Algorithm 1, the computation of S−1

requires 3 (NU − 1) real number multiplications and NU real
number divisions. The initial estimation, provided in Step 4,
requires NU+1

2
× 2 + NU−1

2
× (8 + 2) = 6NU − 4 real number

multiplications. Therefore, the total computational complexity
in initialization steps is 2NBN

2
U + 4NBNU + 10NU − 7.

The iteration steps in Algorithm 2 involves matrix-vector
production. The computation of (S −W)x(i) requires NU+1

2
×

4 (NU − 1) + NU−1
2

× 4 (NU − 3) = 4(NU − 1)
2 real number

multiplications. The resultant vector is multiplied by a stair
matrix, and additional 6NU − 4 real number multiplications
are required. Therefore, the total computational complexity in
iteration steps is K (4N2

U − 2NU). That is to say, the com-
putational complexity of the iterative process is of O (N2

U),
which is the same as the existing iterative methods where the
diagonal matrix is applied.

Last, to obtain L (bk,u), we need the computation of ρ(K)u ,
and the proposed approximation method only requires the
diagonal elements in D, which is obtained in step 3. Compared
to the existing work in [8], [13]–[15], our proposed scheme
saves computational complexity in this stage.

To summarize, the overall computational complexity is the
same level of the existing work. However, as we will see in
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next section, the stair matrix outperforms the diagonal matrix
at all round.

V. NUMERICAL SIMULATIONS AND PERFORMANCE
EVALUATION

A. Convergence Conditions

We first investigate the convergence condition using the
stair matrix. Using Monte-Carlo method, we generate 2e7
random channel matrix H. For each H, we extract the diagonal
matrix D and the stair matrix S, and compute the maximum
eigenvalues of the matrix I−D−1G, and I−S−1G, respectively.
Using numerical simulations, we eventually obtain the cumula-
tive distribution function (CDF) of the maximum eigenvalues,
given by Figure 1. In Figure 1, we evaluate the scenario that
25 users are in service and we increase the number of antennas
at base station from 100 to 200. The following observations
can be found:

● With the increase of antennas at base station, the prob-
ability that the convergence conditions are met, i.e.,
Pr{ρ (I − S−1G) < 1} and Pr{ρ (I −D−1G) < 1} will
increase. Specifically, for the usage of the diagonal ma-
trix, the probability that the convergence conditions are
met, is increase from 0.29 when NB = 100, to 1 when
NB = 200. In accordance, for the usage of the stair
matrix, Pr{ρ (I − S−1G) < 1} is increased from 0.74
when NB = 100, to 1 when NB = 200;

● In low r = NB/NU ≤ 5 region, the usage of
the stair matrix can increase the probability that the
convergence conditions are met. For example, when
NB = 100, Pr{ρ (I −D−1G) < 1} is only 0.29, while
Pr{ρ (I − S−1G) < 1} becomes 0.76. This indicates that
in some low r region, the diagonal matrix is not applica-
ble while the stair matrix can be used;

● In any system configuration, Pr{ρ (I − S−1G) < a} ⩾

Pr{ρ (I −D−1G) < a}, a ∈ (0,1). As the maximum
eigenvalue determines the convergence rate, we can con-
clude that by using the stair matrix, the convergence rate
is more likely faster compare to the usage of the diagonal
matrix.

The above observations validate the applicability of the
usage of the stair matrix and diagonal matrix in massive
MIMO systems. Besides, the results reveal that by using stair
matrix, we can increase the probability that the convergence
conditions are met in low r region compared to the usage of
the diagonal matrix. Furthermore, we also find that by using
the stair matrix, the convergence rate is more likely accelerated
than the usage of the stair matrix.

B. Matrix Inverse

we now investigate the performance of the stair matrix
in Neumann series expansion to approach the matrix in-

verse3. We define ∆ (S) = 1
NU

(I −
L−1
∑
l=0

(I − S−1G)
l
S−1G)

3In implementation, we propose the iterative method as shown in section
IV. However, the results of the iterative method can be seen as the Neumann
series expansion.

Fig. 2. Normalized mean-square error for the matrix inverse approximation

where S = stair (Gu,u−1,Gu,u,Gu,u+1), and ∆ (D) =

1
NU

(I −
L−1
∑
l=0

(I −D−1G)
l
D−1G) where D = diag (G). In

addition, we have ∥∆ (S)∥
2
F and ∥∆ (D)∥

2
F to indicate the

normalized mean-square error for the approximation using
the stair matrix and the diagonal matrix, respectively. With
different truncation order, we present the results in Figure 2.
The following observations can be found:

● With the increase of the truncation order, the normalized
mean-square error is decreased. This indicates that the
more truncation orders used in Neumann series expan-
sion, the more close of the resulting approximation of
the matrix inverse is obtained;

● By using the stair matrix, the normalized mean-square er-
ror is always less than that of using the diagonal matrix in
the same system configuration. This indicates that the use
of the stair matrix always achieves better approximation
performance with the same truncation order compared to
the use of the diagonal matrix;

● By using the stair matrix, less iterations are required to
achieve the the same level of the normalized mean-square
error in using the diagonal matrix. As the truncation order
is equivalent to the iteration number in iterative method,
the less iterations indicate less computational complexity
in implementation.

To summarize, we conclude that the usage of the stair matrix
outperforms the usage of the diagonal matrix in terms of the
matrix inverse approximation performance. As we showed in
section IV.A, the truncation order is equivalent to the iterations
in iterative method; therefore, the results in Figure 2 help to
interpret the convergence performance of the iterative method.

C. Residual Estimation Error

In iterative method, the estimation is to approach the esti-
mation vector in linear ZF/MMSE method. In section IV.C, an
upper bound of the residual estimation error for the use of the
stair matrix in approaching linear ZF detection is presented.
In order to differentiate the residual estimation error for the
use of stair matrix and the diagonal matrix in linear ZF and
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(a)

(b)

Fig. 3. Residual Estimation Error: (a) NB = 150, NU = 25, average SNR=
5dB; (b) NB = 200, NU = 25, average SNR= 3.5dB

MMSE detection, we define the following terms:

J (D1) = ∥(D−1
1 (D1 −G))

L
G−1yMF

∥
2
,

J (D2) = ∥(D−1
2 (D2 −W))

L
W−1yMF

∥
2
,

J (S1) = ∥(S−11 (S1 −G))
L
G−1yMF

∥
2
,

J (S2) = ∥(S−12 (S2 −W))
L
W−1yMF

∥
2
,

where W = G + σ2
zINU

, D1 = diag{G}, D2 =

diag{W}, S1 = stair (Gm,m−1,Gm,m,Gm,m+1), and S2 =

stair (Wm,m−1,Wm,m,Wm,m+1). According to Equation
(38), we can see that J (D1) and J (D2) denote the resid-
ual estimation error for the use of the diagonal matrix in
approaching linear ZF and MMSE detection, respectively.
J (S1) and J (S2) denote the residual estimation error for the
use of the stair matrix in approaching linea ZF and MMSE
detection, respectively. For a given system configuration and
average receiving SNR, we present the residual estimation
error performance in Figure 3. The following observations are
found:

● From Figure 3(a) and 3(b), J (S1) is always less than
J (D1), and J (S2) is always less than J (D2) after the
same iteration numbers. These results reflect that after the
same iterations, using the stair matrix in iterative method
can approach both the linear ZF and MMSE estimation
more closely compared to the use of the diagonal matrix;

● In Figure 3(a), we note that, for the use of the diagonal
matrix, the residual estimation error decreases slowly
and remains a comparatively high level even with large

(a)

(b)

Fig. 4. BER performance: (a) NB = 150, NU = 25; (b) NB = 250,
NU = 25.

iteration numbers. However, by using the stair matrix,
we can speed up the decreasing rate and achieve a
comparatively lower estimation error level. These results
are consistent with the previous numerical results where
we demonstrate that the use of the diagonal matrix may
not be applicable in low r ratio.

● From Figure 3(a) and Figure 3(b), we can see that, with
the increase of the receiving antennas at base station, the
performance gain of the use of the stair matrix over the
use of the diagonal matrix becomes small. These results
are reasonable as NB increases large, G and W both
become diagonal dominant. However, we can also achieve
comparatively lower residual estimation error by using the
stair matrix in iterative method.

To summarize, we conclude that the use of the stair ma-
trix outperforms the use of the diagonal matrix in terms of
the residual estimation error. The performance gain is more
significant in low r ratio, but still obvious in high r ratio.

D. BER Performance

We now evaluate the system BER performance. In the
system, the base station is simultaneously serving NU = 25
users. For each user, a LDPC code with code length 64800,
code rate 1/2 is considered for channel code scheme4. We con-

4LDPC code has been an agreed standard for long code in 5G
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sider 64QAM modulation, and a block independent channel is
considered for the evaluation.

To begin with, we investigate the proposed LLR computa-
tion given by (47), and the equivalent channel gain ρu and
the covariance of the NPI vu are approximated by (45) and
(46). For comparison, we provide the linear MMSE detection
as a benchmark, where the LLR computation is given by
Equation (9) with ρu and vu given by Equation (6) and (8),
respectively. The LLR computation in existing work such as
[8], [13], [14] is to compute the covariance of the NPI after
the first iteration. It is worth pointing out that the iterative
methods in [13], [14] requires less iterations to approach the
linear MMSE detection; however, the LLR computation used
in MMSE detection is not computed from the exact NPI of
the MMSE detection, but the NPI after the first iteration. In
Figure 4, we can see that the BER performance of the Jacobi
method with the LLR computation in [8], [13], [14] is far
away from the BER performance of the MMSE detection
with the exact LLR computation. This is consistent with our
previous analysis, where we pointed out that the covariance
of the NPI will decrease with iterations. However, we note
that the proposed LLR computation can greatly improve the
BER performance of the Jacobi method by approximating
the covariance of the NPI of the MMSE detection. Hereafter,
we only utilize the proposed LLR computation for the BER
performance comparison.

We now present the results with low r = NB/NU region,
and the results are presented in Figure 5. The following
observations are found.

● From Figure 5(a), we note that the BER performance
improvement with the proposed stair matrix compared
to the diagonal matrix is obvious. However, the system
performance is still far away from the MMSE detection
even with sufficient large iterations. Specially, for the use
of the diagonal matrix, the performance is level off after 9
iterations; for the use of the stair matrix, the performance
is greatly improved, but a level off performance still
appears. These are attributed to the slow convergence rate
and not a 100 percent convergence conditions satisfied;

● From Figure 5(b) and Figure 5(c), we can see that the
BER performance eventually converges to the perfor-
mance of the MMSE detection. Specifically, in the system
configuration NB = 150, NU = 25, at SNR= 5dB,
the BER performance of the proposed iterative method
after 13 iterations is almost the same as the performance
of the MMSE detection. In the system configuration
NB = 175, NU = 25, at SNR= 4dB, the BER performance
of the Jacobi method after 9 iterations approaches the
performance of the MMSE detection;

● From Figure 5(a) to Figure 5(c), we can see that the
convergence rate of the proposed iterative method is
faster than that of the Jacobi method. These results
are consistent with the previous analysis. With faster
convergence rate, fewer iterations are required for the
proposed iterative method, hence reducing the overall
system computational complexity.

Next, we evaluate the BER performance in the system

(a)

(b)

(c)

Fig. 5. BER performance: (a) NB = 125, NU = 25; (b) NB = 150,
NU = 25; (c) NB = 175, NU = 25.

Fig. 6. BER performance: NB = 200, NU = 25.
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configuration with high r = NB/NU region, and the results
are shown in Figure 6. It is clear that both the uses of the
diagonal matrix and stair matrix require few iterations to
converge. However, as indicated by the cumulative distribution
function of the maximum eigenvalue, Pr{ρ (I − S−1G) < a} ⩾

Pr{ρ (I −D−1G) < a}, a ∈ (0,1), we can conclude that the
convergence rate of the proposed iterative method using the
stair matrix is faster than that of the Jacobi method using the
diagonal matrix. The results validate these conclusions.

VI. CONCLUSIONS

In this paper, we propose the application of the stair matrix
in massive MIMO systems. To begin with, we demonstrate
that with sufficient large number of antennas at base station,
the probability that the convergence conditions are met with
the use of the stair matrix approaches 1. We then propose
an iterative method to reduce the computational complexity
and show that the overall computational complexity is of
the same level as the existing iterative methods where the
diagonal matrix is applied. Furthermore, we evaluate the
performance of the stair matrix in terms of the probability
that the convergence conditions are met, the normalized mean-
square error of in Neumann series expansion to approach the
matrix inverse, the residual estimation error of the iterative
method to approach the linear ZF/MMSE estimation, and the
system BER performance. Numerical simulations show that
performance enhancement by using the stair matrix over the
diagonal matrix is presented in all performance metrics.

APPENDIX

A. Preliminaries

We first present the preliminary lemmas.
Lemma 5: Let ak ∼ CN (0,1), we then have

E{∣ak ∣
2
} = 1, (48)

E{∣ak ∣
4
} = 2, (49)

E{∣ak ∣
6
} = 6, (50)

E{∣ak ∣
8
} = 24, (51)

Lemma 6: Let a = [a1, a2,⋯, aNB
]

T with each entry ak ∼
CN (0,1), independent and identically distributed (i.i.d.). We
then have

E{aHa} = NB , (52)

E{∣aHa∣
4
} = A3, (53)

E{∣aHa∣
−4

} =
1

B1
, (54)

where A3 and B1 are given by Equations (29) and (25).
Lemma 7: Let a = [a1, a2,⋯, aNB

]
T, b =

[b1, b2,⋯, bNB
]

T, with each entry ak ∼ CN (0,1),
bk ∼ CN (0,1), and i.i.d., we then have

E{∣aHb∣
4
} = A1, (55)

E{∣aHb∣
8
} = A5. (56)

where A1 and A5 are given by Equations (24) and (32).
Lemma 8: Let A = aHbbHc, where a = [a1, a2,⋯, aNB

]
T,

b = [b1, b2,⋯, bNB
]

T, and c = [c1, c2,⋯, cNB
]

T, with each
entry ak ∼ CN (0,1), bk ∼ CN (0,1), and ck ∼ CN (0,1),
and i.i.d., we then have

E{∣A∣
4
} = A2, (57)

where A2 is given by Equation (27)
Lemma 9: Let A = aHabHbcHbbHdaHcdHa, where a =

[a1, a2,⋯, aNB
]

T, b = [b1, b2,⋯, bNB
]

T, c = [c1, c2,⋯, cNB
]

T,
and d = [d1, d2,⋯, dNB

]
T, with each entry ak ∼ CN (0,1),

bk ∼ CN (0,1), ck ∼ CN (0,1), and dk ∼ CN (0,1), and
i.i.d., we then have

E {A2} = A4, (58)

where A4 is given by Equation (30).

B. Proof of Lemma 1
For u ∈ U1, v ≠ u, from Equation (22), we have

E{∣B(u,v)∣
2
} = E

⎧⎪⎪
⎨
⎪⎪⎩

∣W(u,v)∣
2

∣W(u,u)∣
2

⎫⎪⎪
⎬
⎪⎪⎭

⩽

√

E{∣W(u,v)∣
4
} ⋅ E{∣W(u,u)∣

−4
},

(59)

where the Cauchy-Schwarz inequality is applied [8]. From
Lemma 7 and Lemma 6, we have

E{∣Wu,v ∣
4
} = A1, (60)

E{∣W(u,u)∣
−4

} =
1

B1
. (61)

Hence we complete the proof of Lemma 1.

C. Proof of Lemma 2
For u ∈ U2, v = u − 1, from Equation (22), we have

B(u,u−1) =
G(u,u+1)G(u+1,u−1)
G(u,u)G(u+1,u+1)

.

Applying the Cauchy-Schwarz inequality, we have

E{∣B(u,u−1)∣
2
} ⩽

√

E{∣G(u,u+1)G(u+1,u−1)∣
4
}

⋅

√

E{∣(G(u,u)G(u+1,u+1))
−1

∣
4

}

(62)

According to Lemma 8 and Lemma 6, we have

E{∣G(u,u+1)G(u+1,u−1)∣
4
} = A2, (63)

E{∣(G(u,u)G(u+1,u+1))
−1

∣
4

} = E{∣(G(u,u))
−1

∣
4

}

⋅ E{∣(G(u,u))
−1

∣
4

}

=
1

B2
1

.

(64)

For u ∈ U2, v = u + 1, following the similar process, we
have the same result above. Therefore, we complete the proof
of Lemma 2.
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E{∣B(u,v)∣
2
} = E

⎧⎪⎪
⎨
⎪⎪⎩

∣G(u+1,u+1)G(u,u−1)G(u−1,v) +G(u−1,u−1)G(u,u+1)G(u+1,v) −G(u−1,u−1)G(u+1,u+1)G(u,v)∣
2

∣G(u−1,u−1)G(u,u)G(u+1,u+1)∣
2

⎫⎪⎪
⎬
⎪⎪⎭

⩽

√

E{∣G(u+1,u+1)G(u,u−1)G(u−1,v) +G(u−1,u−1)G(u,u+1)G(u+1,v) −G(u−1,u−1)G(u+1,u+1)G(u,v)∣
4
}

⋅

√

E{∣G(u−1,u−1)G(u,u)G(u+1,u+1)∣
−4

}

(65)

E{∣G(u+1,u+1)G(u,u−1)G(u−1,v) +G(u−1,u−1)G(u,u+1)G(u+1,v) −G(u−1,u−1)G(u+1,u+1)G(u,v)∣
4
}

= E{(A +B +C +D +E + F )
2
} ⩽ 6E{A2

+B2
+C2

+D2
+E2

+ F 2}
(66)

E{D2} ⩽ 4E{∣G(u+1,u+1)G(u−1,u−1)G(u,u−1)G(u−1,v)G
∗
(u,u+1)G

∗
(u+1,v)∣

2
} = 4A4 (69)

E{∣B(u,u)∣
2
} = E

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣G(u+1,u+1)∣G(u,u−1)∣
2
+G(u−1,u−1)∣G(u,u+1)∣

2
∣
2

∣G(u,u)G(u−1,u−1)G(u+1,u+1)∣
2

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

⩽

√

E{∣G(u+1,u+1)∣G(u,u−1)∣
2
+G(u−1,u−1)∣G(u,u+1)∣

2
∣
4

} ⋅ E{∣G(u,u)G(u−1,u−1)G(u+1,u+1)∣
−4

}

(73)

D. Proof of Lemma 3
For u ∈ U2, v ∉ {u − 1, u, u + 1}, from Equation (22),

we have E{∣B(u,v)∣
2
} given by Equation (65), where the

Cauchy-Schwarz inequality is applied. Next, we have the first
expectation in the right hand side of the inequality (65) given
by (66), where

A = ∣G(u+1,u+1)∣
2
∣G(u,u−1)G(u−1,v)∣

2
,

B = ∣G(u−1,u−1)∣
2
∣G(u,u+1)G(u+1,v)∣

2
,

C = ∣G(u−1,u−1)∣
2
∣G(u+1,u+1)∣

2
∣G(u,v)∣

2
,

D = 2Re (G(u,u−1)G(u−1,v)G
∗
(u,u+1)G

∗
(u+1,v))

⋅G(u+1,u+1)G(u−1,u−1),

E = −2Re (G(u,u−1)G(u−1,v)G
∗
(u,v))

⋅ ∣G(u+1,u+1)∣
2
G(u−1,u−1),

F = −2Re (G(u,u+1)G(u+1,v)G
∗
(u,v))

⋅ ∣G(u−1,u−1)∣
2
G(u+1,u+1).

The inequality (66) holds by noting that

(A +B +C +D +E + F )
2

⩽ 6 (A2
+B2

+C2
+D2

+E2
+ F 2) ,

where A,B,C,D,E,F are both real numbers. Next, we derive
the expectations as follows individually.

With the results in Lemma 6 and Lemma 8, we have
E (A2) = E (B2) given by

E (A2) = E (B2) = A2A3. (67)

E (C2) is given by

E{C2} = A1A3
2. (68)

where the results in Lemma 6 and Lemma 7 are applied.
By using (Re (a))

2
⩽ ∣a∣

2, we derive the result of E{D2},
given by (69), where A4 is obtained through Lemma 9.

Applying the Cauchy-Schwarz inequality, we have

E{E2} ⩽ 4E{∣G(u−1,u−1)G(u,u−1)G(u−1,v)G
∗
(u,v)∣

2
}

⋅ E{∣G(u+1,u+1)∣
4
}

⩽ 4E{∣G(u+1,u+1)∣
4
}

√

E{∣G(u,u−1)G(u−1,v)∣
4
}

⋅

√

E{∣G(u−1,u−1)G(u,v)∣
4
}

(70)

With the results in Lemma 6, Lemma 7, and Lemma 8, we
derive the result of E{E2} = E{F 2}, given by

E{E2} = E{F 2} ⩽ 4A3

√
A1A2A3. (71)

Therefore, we derive

E{∣B(u,v)∣
2
} ⩽

¿
Á
ÁÀ12A2A3 + 6A1A2

3 + 24A4 + 48
√
A1A2A3

3

B3
1

(72)
Hence, we complete the proof of Lemma 3.

E. Proof of Lemma 4
For u ∈ U2, v = u, from Equation (22), we have

E{∣B(u,v)∣
2
} given by (73), where the Cauchy-Schwarz in-
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equality is applied. By using ∣a + b∣
2
⩽ 2 (∣a∣

2
+ ∣b∣

2
), we have

∣G(u+1,u+1)∣G(u,u−1)∣
2
+G(u−1,u−1)∣G(u,u+1)∣

2
∣
2

⩽ 2 (∣G(u+1,u+1)∣
2
∣G(u,u−1)∣

4
+ ∣G(u−1,u−1)∣

2
∣G(u,u+1)∣

4
) ,

∣G(u+1,u+1)∣G(u,u−1)∣
2
+G(u−1,u−1)∣G(u,u+1)∣

2
∣
4

⩽ 8 (∣G(u+1,u+1)∣
4
∣G(u,u−1)∣

8
+ ∣G(u−1,u−1)∣

4
∣G(u,u+1)∣

8
) .

(74)

Therefore, we derive

E{∣G(u+1,u+1)∣G(u,u−1)∣
2
+G(u−1,u−1)∣G(u,u+1)∣

2
∣
4

}

⩽ 8E (∣G(u+1,u+1)∣
4
)E (∣G(u,u−1)∣

8
)

+ 8E (∣G(u−1,u−1)∣
4
)E (∣G(u,u+1)∣

8
) .

(75)

With the results in Lemma 6 and 7, we have

E{∣B(u,u)∣
2
} ⩽

¿
Á
ÁÀ16A3A5

B3
1

. (76)

Hence we complete the proof of Lemma 4.
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