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Abstract

Pilot contamination has been known as one of the most challenging issues in massive multiple input

multiple output (MIMO) systems. To be specific, every user will experience interferences from adjacent

cell users who employ the same pilot sequence. For cell-edge users, pilot contamination is particularly

detrimental, because their signals might be overwhelmed by interference from adjacent cells. In this

paper, we propose a pilot decontamination method based on spatial filter, which exploits the spatial

sparsity of massive MIMO channels. In massive MIMO communication protocols, there are generally

four phases: pilot transmission, processing, uplink data transmission, downlink data transmission. In the

first phase, the base station (BS) receives both desired signal and pilot contamination. In the second

one, all users in the target cell stay silent for one symbol period and the BS only receives interference

from adjacent cells. Then, fast Fourier transform can be employed to analyze the spatial spectrums

of received signals in these two phases. Due to the spatial sparsity of massive MIMO channels, it is

possible to identify pilot contamination components by comparing these two spectrums on different

spatial signatures (or angles of arrival). Then, the next step is to construct a spatial filter and eliminate

pilot contaminations. Both theoretical analysis and simulation results support the effectiveness of the

proposed method. Besides, the complexity of the proposed method is comparable to that of the traditional

channel estimator based on matched filter.
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I. INTRODUCTION

Massive multiple input multiple output (MIMO) has been a very hot research topic in recent

years for its great potentials in improving spectral and energy efficiencies [1]. As one of

the most important techniques for the fifth generation (5G) cellular networks, it aims to serve

tens of single-antenna users with hundreds of antennas at base station (BS). The increase of

antenna number at BSs brings many advantages. First, energy efficiency can be improved

because antenna array at BSs can concentrate energy on users through beamforming [2]. Besides,

spatial division multiple access (SDMA) is employed over orthogonal frequency division multiple

access (OFDMA), which allows the same time-frequency resources to be reused by all users in the

same cell, leading to much higher spectral efficiency. Moreover, low-complexity algorithms (e.g.,

matched filter) can be employed for precoding and decoding in massive MIMO [3], [4], because

channels of different users are asymptotically orthogonal when BS antenna number is sufficiently

large. Although the large antenna arrays at BSs will induce high computational complexity,

researchers are working on iterative algorithms to maintain it on an acceptable level [5]–[7].

Last but not least, cheap power amplifiers working at milli-Watt level can be employed, because

of the great power gain of BS antenna array [8], [9]. In spite of these great advantages, the

practical application of massive MIMO is still facing some challenges and one of them is pilot

contamination.

Similar to the traditional multi-user MIMO, channel estimation is indispensable for massive

MIMO. Generally, orthogonal pilot sequences are assigned to users in the same cell and intra-

cell interference can be totally eliminated. However, the length, and thus the number of pilot

sequences are limited by coherence time and bandwidth, which leads to the unavoidable reuse

of pilots in adjacent cells. Therefore, users sharing the same pilot will interfere with each other

in the process of channel estimation and this phenomenon is referred to as pilot contamination,

which puts a fundamental limit on the capacity of massive MIMO systems [1]. For cell-edge

users, this problem is particularly detrimental, because their signal strength is comparable to

their peers in adjacent cells. To break this barrier, many possible solutions have been proposed

[10]–[22], and they will be briefly reviewed in the following paragraphs.

In our previous work [23], the pilot decontamination strategies are divided into four categories.

The first choice is to alleviate pilot contamination by creating more orthogonal pilot sequences.
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This can be done in time domain by lengthen pilot sequences, or in frequency domain by

reducing the frequency reuse factor, as suggested by [1]. In [24], the authors employ a pilot

length seven times the number of users per cell, so as to guarantee pilot orthogonality among

users in adjacent cells. These methods can suppress pilot contamination to great extent, because

adjacent cell users are major interfering sources. However, spectral efficiency will decrease due

to the increased length of pilots in time or frequency domain. To overcome this deficiency, the

authors of [13] proposed a time-shifted pilot scheme. In this method, when users of a specific

cell are transmitting pilot sequences, all the adjacent cell users are at the phase of downlink data

transmission or processing. By doing this, pilot contamination is no longer an issue, but inter-

cell interference might be stronger, because cell-edge users will experience strong interferences

from BSs in adjacent cells during pilot transmission phase. In this case, channel estimation

will be conducted in low signal to interference and noise ratio (SINR). For the second type of

decontamination strategies, the basic idea is to identify the subspace of desired signals by utilizing

the statistics of channel state information (CSI) and received signals. For example, eigenvalue

decomposition (EVD) is employed for channel estimation in [2], because the authors proved

that every channel vector is an eigenvector of the covariance matrix of received signals when

BS antenna number is sufficiently large. In [17], this idea is further developed, which proposes

to obtain the subspace of channel vectors through singular value decomposition (SVD) of the

received signal matrix. Then, pilot contamination can be eliminated by projecting the received

signal onto this subspace. However, the efficacy of these methods is based on the assumption that

desired signals are always stronger than pilot contaminations, which can not be guaranteed for

cell-edge users. When the received signals are sparse in space, there is another possible solution

for pilot contamination proposed in [11] and [25]. In [11], the authors show that MMSE estimator

can completely eliminate pilot contamination, given that angle spreads of desired and interfering

users do not overlap. Therefore, the same pilot sequence should be assigned to those users

with minimum overlap in angular domain. In [25], the authors take both angular and power

domain discriminations for pilot decontamination, based on the assumption that desired signals

are generally stronger than pilot contaminations. In the third type of decontamination methods,

both data and pilot are employed for channel estimation, as proposed in [16] and [21]. Noticing

that data is generally longer than pilot, even when users are sharing the same pilot sequence,

their data are still asymptotically orthogonal. Therefore, decoded data, in spite of being partially
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correct, can be used to suppress pilot contamination and improve channel estimation accuracy.

The last strategy is referred to as pilot contamination precoding (PCP) [19], [20], [26]. In all the

other three types of decontamination methods, different cells work almost independently, while

PCP is dependent on multi-cell cooperation. The basic idea is to add a precoding and decoding

layer among adjacent cells, by doing which pilot contamination can be totally eliminated, given

that BS antenna number approaches infinity. The price of PCP algorithms is the overhead of CSI

exchange among BSs, which might be a problem for 5G, considering the large user population,

high data rate and low latency demands.

In many researches above mentioned, desired signals are assumed to be stronger than pilot

contamination. However, it is very difficult to guarantee this condition for cell-edge users in

practical scenarios. Taking this into consideration, we proposed an innovative pilot decontam-

ination method by employing the spatial sparsity of signals in massive MIMO systems. As

we know, there are generally four phases in massive MIMO communication protocols: pilot

transmission, processing, uplink data transmission, and downlink data transmissions. When a cell

is in pilot transmission phase, the BS will receive signals from both desired and interfering users.

Then, by employing fast fourier transformation (FFT), the BS can obtain the energy distribution

of received signal in space. Then, during processing phase, users in the target cell will stay

silent and the BS can monitor the signals from interfering users in adjacent cells. In this case,

the BS can obtain the energy distribution of interfering users in space. By comparing these

two distributions, the BS can identify the direction of arrival (DOA) of pilot contamination

and construct the corresponding subspace. The last step is to project the channel estimation

of matched filter (MF) onto its complementary subspace to eliminate pilot contamination and

improve channel estimation accuracy. The fundamental idea behind this new method is that

wireless channels are sparse in space domain, i.e., most energy of the desired signals concentrates

on a small number of paths (or directions, equivalently) [11], [15], [27]–[30]. This is especially

true for massive MIMO, because compared with the huge quantity of antennas at BS, the number

of significant paths is much smaller. In [11] and [15], the authors even assume that the DOA

spread of every terminal is limited to a narrow angle. Moreover, the propagation model of

millimeter wave, being viewed as the perfect match for massive MIMO [31], tends to be line

of sight (LOS) or near-LOS [32], which means the wireless channel for millimeter wave will be

even sparser. Part of our work has been published in [33], where we presented the basic idea and
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some preliminary numerical results. In this paper, the major contributions include the following

aspects.

• First, we systematically introduced the concepts of spatial spectrum and spatial sampling.

We prove that more than 80 percent energy concentrates on the mainlobe for the signal

coming from an arbitrary direction. Therefore, received signals are sparse in space.

• Second, we show that the probability that the mainlobes of desired signal and pilot contami-

nation overlap in space is inversely proportional to the number of BS antennas. For massive

MIMO, this probability is negligible. As a result, it is possible to isolate pilot contamination

from desired signals in space.

• Third, we propose an algorithm to identify the mainlobes of pilot contamination. The BS

receives signal in both pilot transmission and processing phases. Desired signal only exists

in pilot transmission phase, while pilot contamination exists in both phases. Therefore, on a

specific direction, the ratio of the received signal strength in these two phases is a random

variable, and its distribution depends on whether pilot contamination exists or not on this

direction. We analyze the conditional distributions of the ratio in different scenarios and

employ maximum a posterior (MAP) algorithm to identify pilot contamination components.

The remaining parts of this paper is organized as follows. In Section II, system model of

massive MIMO systems and the pilot contamination issue are presented. In Section III, we

introduced the concepts of spatial spectrum and spatial sampling. In Section IV, the proposed

method is presented and analyzed in detail. The last two sections are simulations and conclusions,

respectively.

Notations: throughout the paper, the upper case bold letters represent matrixes while the lower

case bold font denotes column vectors. Tr{A} means the trace of an arbitrary matrix A. E{·}

represents the expectation of any random variable, vector or matrix. V {·} gives the covariace

matrix of a random vector or variance of a random variable. AT and AH indicate the transpose

and Hermite transpose of matrix A. | · | is the norm of the target vector. Pr(A) is the probability

that event A happens. For an arbitrary vector a, a[n] indicates the n-th component. ={a} and

<{a} represent the imaginary and real parts of a complex number a.
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II. CHANNEL MODEL AND PILOT CONTAMINATION

In massive MIMO systems, hundreds of antennas are installed at BS to serve tens of users.

Generally, the antenna array at BS can be in various forms, i.e., linear, rectangular or even

cylindrical. However, in our case, to maximize the angular domain resolution, we assume that

M antennas are linearly placed at the BS and the distance between any two adjacent antenna

elements is equal to half the wavelength of the carrier [34]. To begin with, suppose that there

is only one path between user and BS, and the angle of arrival of the desired signal is denoted

by θ. Then, the system model will be given as: [34]

y = x
√
ρe[ω] + n, (1)

where ω = π cos θ, x is the transmitted symbol, ρ is the path-loss coefficient, and n is white

noise. e[ω] is referred to as the spatial signature of this signal and is given by [34]:

e[ω] :=
1√
M



1

exp(−jω)

...

exp(−j(M − 1)ω)


. (2)

When there are more than one pathes between user and BS, the channel model will be

h =
B∑
b=1

√
ρbe[ωb]e

jφb , (3)

where φb and e[ωb] denote the random phase delay and spatial signature of the b-th path,

respectively. ρb is the path-loss coefficient given by ρb = sb
dγ

, in which γ is the path-loss

exponent and d represents the distance between the terminal and the BS. sb is a log-normal

random variable, i.e., 10 lg sb ∼ N (0, σ2
shad)

1 [1]. This model is widely adopted in massive

MIMO related literatures [11], [15], [22], [35].

Assume the user number per cell is K, and pilot length is τ . To avoid intra-cell interference,

the users in the same cell should be assigned with orthogonal pilot sequences, which demands

τ ≥ K. Suppose we have L cells in the area of interest, and K orthogonal pilot sequences are

1In this paper, lg (·) and ln (·) represent base-10 and natural logarithms, respectively.
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fully reused in all cells. Then, the received pilot signal at the l-th BS will be

Y(l) = H
(l)
l PT +

∑
l′ 6=l

H
(l)
l′ P

T + N, (4)

where P = [p1,p2, · · · ,pK ], and pk is the k-th pilot sequence. The elements in N ∈ CM×τ are

i.i.d. zero-mean complex Gaussian noise, with a variance of σ2
n. Therefore, we have E{NNH} =

τσ2
n · IM . H(l)

l′ ∈ CM×K is the channel matrix between the users in cell l′ and the BS in cell l.

With matched filter, channel estimation of the l-th cell will be

Ĥ
(l)
mf = Y(l)P∗/τ = H

(l)
l +

∑
l′ 6=l

H
(l)
l′ + NP∗/τ, (5)

where we implicitly use the fact that PTP∗ = τ · IK , due to the orthogonality of different pilot

sequences. For the k-th user in the l-th cell, the MF channel estimation will be

ĥ
(l,k)
mf = h

(l)
l,k +

∑
l′ 6=l

h
(l)
l′,k + nk, (6)

where nk = NP∗/τ . As we can observe in Eqn. (6), the channel estimation based on MF

consists of three parts. The first and last parts are desired channel information and noise,

respectively, while the middle part contains interference from other cells due to pilot reuse, i.e.,

pilot contamination. Based on the channel model in Equation (3), the received signal strength

decreases fast with distance, which leads to the following observations.

(a). First, the most significant pilot contamination must come from adjacent cells. Considering

typical hexagonal cells, for the k-th user in the l-th cell, there are only six neighbor cells and

every cell only contains one interfering user. Therefore, pilot contamination for a specific

target user is sparse, compared with the huge number of antennas at BS.

(b). For users close to the BS, pilot contamination is not a big issue because their signal

will be much stronger than interference. However, cell-edge users are vulnerable to pilot

contamination, because their signals may be overwhelmed by interfering users.

Motivated by these observations, we propose an innovative pilot decontamination method, aiming

to improve the SINR of cell-edge users. Before presenting the proposed algorithm, we need to

first briefly review the concepts of spatial spectrum and sampling in the following section.
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III. SPATIAL SPECTRUM AND SAMPLING

A. The Concept of Spatial Spectrum

Assume the received signal at the BS is given as y = x
√
ρse[ωs]+n, where e[ωs] is the spatial

signature of received signal, and n represents noise. Then, we can define the spatial spectrum

of the received signal as

Y (ω) = e[ω]Hy = x
√
ρse[ω]He[ωs] + e[ω]Hn. (7)

From another perspective,

Y (ω) = e[ω]Hy =
1√
M

M∑
m=1

y[m]ejmω = IDTFT [y ], (8)

where IDTFT is short for inverse discrete time fourier transform. From Eqn. (7), we can see

that it is important to figure out how the envelope of e[ω]He[ωs] varies with ω.

Define f(∆ω) := e[ω1]He[ω2] (∀ω1, ω2 ∈ [0, 2π]), where ∆ω = ω2 − ω1, and we can obtain

f(∆ω) =
sin M∆ω

2

M sin ∆ω
2

· e−j(M−1)∆ω/2. (9)

Figure 1 shows numerical results of |f(∆ω)| with different M .

-1 -0.5 0 0.5 1
∆ω/π

0

0.2

0.4

0.6

0.8

1

|f
(∆

ω
)|

M = 5
M = 10
M = 100

Fig. 1. The main lobe of |f(∆ω)| becomes narrower as M increases.

As shown in Fig. 1, the main lobe of |f(∆ω)| is centered at 0, with an width of 4π/M .

For massive MIMO, M is generally very large, and most energy concentrates on a small angle

spread. Therefore, interference and desired signals are generally well separated in space (i.e., the
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main lobes of signal and interference do not overlap). In this case, spatial filter can be constructed

to filter out the main lobe of interference while maintain most energy of desired signals.

B. The Concept of Spatial Sampling

Analogous to the time domain signal processing, we can employ IDFT (Inverse Discrete

Fourier Transform)2 instead of IDTFT to analyze the spectrum of a target sequence, which

is more suitable for the modern digital signal processors. To be specific, the discrete spatial

spectrum of y is

yω = IDFT [y ] = FMy, (10)

where FM is given as FM := [ e [ 0 ] , e [ω0] , · · · , e [(M − 1)ω0] ]H and ω0 = 2π/M . As a result,

yω is the sampled version of Y (ω) in Equation (8). An arbitrary spatial vector e[ω] (ω ∈ [0, 2π))

can be decomposed as e[ω] =
∑M−1

m=0 αme[mω0], where αm’s and their absolute values are given

by

αm = e[mω0]He[ω] and |αm| =
1

M

∣∣∣∣∣sin M
2

(ω −mω0)

sin 1
2
(ω −mω0)

∣∣∣∣∣ . (11)

There exists an integer l ∈ [0,M − 1], which guarantees ω/ω0 ∈ [l, l + 1). Therefore, we can

write ω as ω = (l + β)ω0 (0 ≤ β < 1). Based on these definitions, we present the following

theorem.

Theorem 1: When M is infinitely large, more than 80% energy concentrates on e[lω0] and

e[(l + 1)ω0]. To be specific, lim
M→∞

|αl|2 + |αl+1|2 ≥ 8/π2 and the equality holds when β = 0.5.

Proof: When β = 0, we have ω = lω0, leading to |αl|2 + |αl+1|2 = |f(0)|2 + |f(ω0)|2 = 1.

When β 6= 0, the limit of |αl|2 + |αl+1|2 can be derived as follows.

lim
M→∞

|αl|2 + |αl+1|2 = lim
M→∞

|f(βω0)|2 + |f(ω0 − βω0)|2 =
sin2 βπ

π2

[
1

β2
+

1

(1− β)2

]
.

Define R(β) = sin2 βπ
π2

[
1
β2 + 1

(1−β)2

]
(β ∈ (0, 1)) and numerical results show that R(β) is a

concave function. Noticing that dR(β)
dβ

∣∣∣
β=0.5

= 0, we can conclude that R(β) has a minimum at

β = 0.5, and R(0.5) = 8/π2.

Theorem 1 shows that most energy of received signal from a specific direction concentrates

on the two samples in the main lobe. As a result, if we use αle[lω0] + αl+1e[(l + 1)ω0] to

2It should be noted that we can employ fast Fourier transform (FFT) to reduce computational complexity.
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approximate e[ω], the residual error will be smaller than 20%. Generally, if we take the closest

2R components to reestablish e[ω], residual error can be defined as

Res[R ] = 1−
R∑
r=1

|αmodM (l+1−r)|2 + |αmodM (l+r)|2, (12)

where modM(k) = mod(k,M). Then, the residual error is upper bounded by

Res[R] ≤ π2

12
+

1

4R2
−

R∑
r=1

1

2r2
, (13)

and this bound is justified in Appendix A.

These analyses show that the discrete spatial spectrum of the desired signal is sparse, and

most energy of the desired signals and interference concentrates on narrow angle spreads. As

a result, the intuitive idea is to identify the main lobes of pilot contamination, and construct a

spatial filter to eliminate them.

IV. SPATIAL FILTER BASED CHANNEL ESTIMATION METHOD

As has been discussed, pilot contamination mainly emerges from adjacent cells, and the

received signal is generally sparse in space. Besides, cell-edge users are most vulnerable to

pilot contamination, because their signals are not necessarily stronger than interferences. Based

on these observations, we proposed an innovative pilot decontamination algorithm for massive

MIMO users.

The first step is to divide all cells into three groups, G1, G2 and G3, and make sure that

adjacent cells belong to different groups. Then, we slightly modify the widely employed TDD

communication protocol by shifting the processing phase of different groups, as illustrated in

Figure 2.

Pilot Uplink Data

Pilot

Pilot Downlink Data

Downlink Data

Downlink DataProcessing

Uplink Data

Uplink Data

Uplink Data

Uplink Data

Processing

Processing

Fig. 2. Shifted pilot schedule.

As we can see in Figure 2, when one group is in the processing phase, the other two groups
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are transmitting uplink data. Without loss of generality, we assume the l-th cell is the target cell,

and it belongs to G1. Then, by employing the MF channel estimator, we can obtain the channel

estimation of the k-th user in the l-th cell as

ĥ
(l,k)
mf = Y(l)p∗k/τ = h

(l)
l,k +

∑
cl′ /∈G1

h
(l)
l′,k +

∑
cl′∈G1,l′ 6=l

h
(l)
l′,k + nk, (14)

where cl denotes the l-th cell, and nk = Np∗k/τ . h(l)
l′,k represents the channel vector from the k-th

user in the l′-th cell to the l-th BS. In Equation (14), the first and last parts are the desired CSI

and white noise, respectively. The second part contains pilot contamination from the k-th users

in G2 and G3. It should be noted that only six of them are located in adjacent cells for typical

hexagonal cells, which means there are at most six strong pilot contamination components. The

third part contains pilot contamination from users in G1, which are all weak because they are at

least of three cell radius away from cl. Overall, there are potentially seven strong components

in ĥ
(1,k)
mf , and it is very sparse compared with the number of BS antennas.

During the processing phase of cells in G1, all users in cl are silent, and the BS can receive

signals from users in active cells (cl′ ∈ G2 ∪G3 or cl′ /∈ G1) as

y(l)
proc =

∑
cl′ /∈G1

h
(l)
l′,ksl′,k +

∑
k′ 6=k

∑
cl′ /∈G1

h
(l)
l′,k′sl′,k′ + nproc, (15)

where sl,k′ is the transmitted symbol of the k′-th user in the l-th cell during the processing phase

of cells in G1. In Equation (15), the first part denotes signals from the k-th users in cells belong

to G2 and G3, and contains at most six strong components. The second part denotes general

inter-cell interference from active cells, which does not exist in Equation (14), because none of

these interfering users in this part is using the k-th pilot sequence.

Based on the above discussions, we can see that ĥ
(l,k)
mf is sparse in space, and the major

components include both desired signals and pilot contaminations. On the other hand, y(l)
proc is

composed of pilot contaminations and general inter-cell interference. The spatial spectrums of

these two vectors will overlap on those spatial signatures dominated by pilot contaminations,

as shown in Figure 3. As a result, the intuitive idea is to eliminate polite contamination by

identifying their spatial signatures and construct the complementary subspace. To achieve this

goal, the first step is to identify the major spatial signatures in ĥ
(l,k)
mf , where pilot contamination

March 13, 2018 DRAFT



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 12

ĥ
(l,k)
mf =

B∑
b=1

a
(l,k)
b · e[ω

(l,k)
b ] +

6∑
i=1

B∑
b=1

a
(li,k)
b · e[ω

(li,k)
b ] +

∑
l′ /∈{l,{li}6i=1}

B∑
b=1

a
(l,k)
b · e[ω

(l,k)
b ] + nk, (16)

from adjacent cells must exist. By doing this, we only need to focus on a small number of

spatial signatures when we try to identify pilot contamination in future steps, which will cut

down complexity and processing time.

A. Identification of the Spatial Signatures of Desired Signals and Pilot Contaminations

Processing PhasePilot Transmission Phase

U1-1

U2-1

Desired Signal

Inter-cell

Interference

U2-1

BS2

BS1

BS2

U1-1

BS1

Fig. 3. Pilot contamination identification.

As we have mentioned, the third part in Equation (14) is negligible. Besides, there are only

six strong components in the second part. Without loss of generality, assume the indexes of these

six adjacent cells are l1, l2, · · · , l6, and Equation (14) can be reorganized as

where a(l,k)
b =

√
ρ

(k,l)
b ejφ

(k,l)
b denotes the coefficient of the b-th path from the k-th user in the

l-th cell. ρ(k,l)
b and ejφ

(k,l)
b are the path-loss coefficient and random phase, respectively.

To identify the spatial signatures of desired signals and pilot contaminations, we need to

analyze the spatial spectrum of ĥ
(l,k)
mf through IDFT as ĥ

(l,k)
ω = FM ĥ

(l,k)
mf , which indicates the

energy distribution of ĥ(l,k)
mf on different directions and the m-th component of ĥ(l,k)

mf is given by

ĥ(l,k)
ω [m] =

B∑
b=1

a
(l,k)
b · f

(
ω

(l,k)
b −mω0

)
+

6∑
i=1

B∑
b=1

a
(li,k)
b · f

(
ω

(li,k)
b −mω0

)
+

∑
l′ /∈{l,{li}6i=1}

B∑
b=1

a
(l′,k)
b · f

(
ω

(l′,k)
b −mω0

)
+ nk[m].

(17)
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For l′ /∈ {l, {li}6
i=1},

∣∣∣a(l′,k)
b

∣∣∣ is negligible because users in these cells are at least three cell-

radius away from the target BS. According to the Central limit theorem, the third part in Equation

(17) can be viewed as Gaussian noise. Therefore, we define ñk[m] to replace the last two parts:

ñk[m] =
∑

l′ /∈{li}6i=1

B∑
b=1

a
(l′,k)
b · f

(
ω

(l′,k)
b −mω0

)
+ nk[m]. (18)

As we have mentioned, most of the received energy concentrates on a few directions; therefore,

the received signal will be much stronger than noise on those directions. Motivated by this

observations, we define the following metric to identify the spatial signatures and desired signals:

λ(l,k)
m =

∣∣∣ĥ(l,k)
ω [m]

∣∣∣2 . (19)

In this equation, λ(l,k)
m indicates the received energy of the l-th BS on the m-th spatial signature (or

direction). When ĥ
(l,k)
ω does not a strong component on mω0 or the signal is substantially weaker

than noise, λ is generally small and follows exponential distribution. On the other hand, λ will be

much larger if ĥ(l,k)
ω has a strong component on mω0, and the probability density function (PDF)

of λ is very close to normal distribution. The empirical distribution of λ(l,k)
m is shown in Fig. 4. In

Fig. 4. Probability density function of λ(l,k)
m when signal is ten times stronger than noise on mω0.

Figure 4, H0 = 1 means that neither desired signal nor pilot contamination exist on mω0, while

H1 = 1 represents the opposite situation. Given that H0 = 1 on mω0, the value of λ(l,k)
m is very

small. On the contrary, when H1 = 1, the received signal strength on mω0 will be much larger.
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As a result, we can set a threshold to identify these strong components and and their spatial

signatures. Here, we just assume the threshold has been obtained as λth, and further details on

threshold selection will be discussed in next section.

Then, the spatial signatures of the desired signals or pilot contamination of the k-th user in the

l-the cell will be U
(l,k)
S,P = [ e [m1ω0] , e [m2ω0] , · · · , e [mQω0] ], where mq satisfies λ(l,k)

mq > λth.

B. Selection of Threshold λth

Let f0(λ
(l,k)
m ) and f1(λ

(l,k)
m ) denote the PDF of λ(l,k)

m in H0 = 1 and H1 = 1 scenarios. As is

discussed in Appendix B, f0(λ
(l,k)
m ) is exponential distribution, while f1(λ

(l,k)
m ) is very close to

normal distribution. Based on signal detection theory, the false alarm rate and the miss rate can

be defined as:

RFA = Pr
(
λ(l,k)
m > λth|H0 = 1

)
, RM = Pr

(
λ(l,k)
m ≤ λth|H1 = 1

)
, (20)

and they are demonstrated in Fig. 4. To minimize the false alarm and miss rates, λth should be

chosen as ,

λth =
[
3SNRo + 1−

√
2SNRo · (4SNRo + 2− ln (4πSNRo))

]
· σ2

o . (21)

so that f0(λth) = f1(λth). σ2
o is the variance of ñk[m], while SNRo indicates the ratio of signal

(or pilot contamination) strength to σ2
o . They can be found in Appendix B. The false alarm

and miss rates are exclusively dependent on SNRo, as shown in Equation (22a) and (22b),

respectively. The proof can be found in Appendix B. Besides, we can prove that both RM and

RFA decrease with SNRo. Due to space limit, the proof is not included.

RM =
1

2
erfc

(
−
√
SNRo +

√(
2SNRo + 1− 1

2
ln (4πSNRo)

))
(22a)

RFA = exp
(
−3SNRo − 1 +

√
2SNRo · (4SNRo + 2− ln (4πSNRo))

)
(22b)

In practical scenarios, both SNRo and σo are unknown. Therefore, we need to estimate them

from the MF channel estimations, i.e., ĥ(l,k)
mf . As we have mentioned, desired signals and pilot

contamination only exist on a small fraction of the components in ĥ
(l,k)
ω . As a result, we can

sort the components in ĥ
(l,k)
ω based on their strength, and choose the weakest ones of them to
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estimate σ2
o . On the other hand, the strongest ones can be employed to estimate signal (or pilot

contamination) strength. Then, SNRo can be estimated as the ratio of signal strength to σ2
o .

C. The Isolation of Pilot Contamination in yproc

During the processing phase, the received signal is given by Equation (15), which is composed

of signals from all cells in G2 and G3. However, only six of them are adjacent to the target BS

and generate strong interferences. Therefore, we can rewrite Equation (15) as (23),

y(l)
proc =

6∑
i=1

h
(l)
li,k
sli,k +

∑
k′ 6=k

6∑
i=1

h
(l)
li,k′

sli,k′ +
∑

cl′ /∈{G1
⋃
{li}6i=1}

∑
k′

h
(l)
l′,k′sl′,k′ + nproc, (23)

and the spatial spectrum of y
(l)
proc can be obtained through IDFT as y

(l)
ω = FMy

(l)
proc. The m-th

element will be

y(l)
ω [m] =

6∑
i=1

B∑
b=1

a
(li,k)
b · f

(
ω

(li,k)
b −mω0

)
sli,k + ñproc[m], (24)

where ñproc indicates the IDFT of the last three parts in Eqn. (23) combined. Due to the large

number of users, ñproc can be treated as Gaussian noise.

The strong components in y
(l)
ω falls in two categories: pilot contamination and general inter-

cell interferences. It should be noted that both these two categories come from adjacent cell users

that are located close to the edges of cl. Our major objective is to identify the spatial signatures

of pilot contaminations through the following metric:

φ(l,k)
m =

|y(l)
ω [m]|2

|ĥ(l,k)
ω [m]|2

, (25)

where y
(l)
ω [m] is given by Equation (24). It should be noted that we only need to compute φ(l,k)

m ’s

for m = mq (q = 1, 2, · · · , Q), because spatial signatures of pilot contamination of the k-th user

in the l-th cell must be among the columns of U(l,k)
S,P .

Depending on whether desired signal or pilot contamination exists on mω0, the conditional

PDF of φ(l,k)
m can be represented as fds

(
φ

(l,k)
m

)
or fpc

(
φ

(l,k)
m

)
, respectively. The closed form

representations of these two functions will be discussed in next section. Then, we can identify

pilot contamination through maximum a posteriori probability (MAP) estimation. As a result,
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the subspace of pilot contamination for the k-th user in the l-th cell can be constructed as

U
(l,k)
P = [ e [m′1ω0] , e [m′2ω0] , · · · , e [m′Pω0] ] , (26)

where m′p satisfies λ(l,k)
m′
p
> λth and fpc

(
φ

(l,k)
m′
p

)
> fds

(
φ

(l,k)
m′
p

)
. The last step is to project the MF

channel estimation onto the null space of U(l,k)
P to eliminate strong pilot contaminations as

ĥ
(l,k)
sf = (I−U

(l,k)
P U

(l,k)
P

H
)ĥ

(l,k)
mf , (27)

where ĥ
(l,k)
sf is the new channel estimation of the k-th user in cl based on spatial filter. The

proposed algorithm is briefly summarized in Algorithm 1.

Algorithm 1 Channel estimation for the k-th user in the l-th cell based on spatial filter.
Input:

Received pilot, Y(l);
Received signal on processing phase, y(l)

proc;
The k-th pilot sequence, pk.

Output:
Channel estimation

1: MF channel estimation ĥ
(l,k)
mf ;

2: Compute the spectrum of ĥ(l,k)
mf ;

3: Identify the spatial signatures of desired signals and pilot contamination through λ(l,k)
m ;

4: Compute the spectrum of y(l)
proc;

5: Subspace construction of pilot contamination through φ(l,k)
m ;

6: Pilot contamination elimination by subspace projection
ĥ

(l,k)
sf = (I−U

(l,k)
P U

(l,k)
P

H
)ĥ

(l,k)
mf ;

7: return ĥ
(l,k)
sf ;

D. Conditional PDF of φ(l,k)
m

As we have mentioned, φ(l,k)
m tends to be smaller when pilot contamination exists on mω0.

On the other hand, φ(l,k)
m will be larger when desired signals come from mω0. Therefore, φ(l,k)

m

follows different distributions in these two scenarios. To employ the MAP estimator, we need

to first analyze the statistical properties of φ(l,k)
m in different situations.

We will first analyze the distribution of φ(l,k)
m when pilot contamination exists on mω0. Without

loss of generality, we assume pilot contamination on mω0 comes from the b-th path of the
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k-th user in the li-th cell. In other words, ω(li,k)
b is close to mω0, there will be strong pilot

contamination components in both y
(l)
ω [m] and ĥ

(l,k)
ω [m], presented as ĥ(l,k)

ω [m] = a
(li,k)
b · f(ω

(li,k)
b −mω0) + ñk[m]

y(l)
ω [m] = a

(li,k)
b · f(ω

(li,k)
b −mω0)sli,k + ñproc[m],

(28)

where ñproc ∼ N(0, σ2
proc · IM). In this case,

φ(l,k)
m =

|rpcsli,k + ñproc[m]|2

|rpc + ñk[m]|2
, (29)

where rpc = a
(li,k)
b · f(ω

(li,k)
b −mω0). |ñk[m]|2 can be neglected because it’s much weaker than

rpc. Therefore, we have

φ(l,k)
m 2|rpc|2/σ2

proc =

∣∣∣∣∣<{rpc}+ <
{
ñproc[m]s∗li,k

}
σproc/

√
2

∣∣∣∣∣
2

+

∣∣∣∣∣={rpc}+ =
{
ñproc[m]s∗li,k

}
σproc/

√
2

∣∣∣∣∣
2

. (30)

By noticing that the right hand side of Equation (30) follows noncentral chi-square distribution,

we can obtain the approximate PDF of φ(l,k)
m as

fpc(φ
(l,k)
m ) =

|rpc|2

σ2
proc

exp

(
−|rpc|

2

σ2
proc

(
φ(l,k)
m + 1

))
· I0

(
2|rpc|2

σ2
proc

√
φ

(l,k)
m

)
, (31)

where I0(·) denotes the modified Bessel function of the first kind given by

Iv(y) = (y/2)v
∞∑
j=0

(y2/4)j

j!Γ(v + j + 1)
. (32)

This result is justified in Appendix D.

On the other hand, when a specific path of desired signals is close to mω0, there will be

strong signal component in ĥ
(l,k)
ω [m]. Without loss of generality, assume the index of that path

is b and we have the following approximation: ĥ(l,k)
ω [m] = a

(l,k)
b · f(ω

(l,k)
b −mω0) + ñk[m]

y(l)
ω [m] = ñproc[m].

(33)

In this case,

φ(l,k)
m =

|ñproc[m]|2

|rds + ñk[m]|2
≈ |ñproc[m]|2

|rds|2
. (34)
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where rds = a
(l,k)
b · f(ω

(l,k)
b −mω0). |ñk[m]|2 can be neglected because it’s much weaker than

rds. Therefore, the PDF of φ(l,k)
m can be approximated by exponential distribution, given by

fds
(
φ(l,k)
m

)
=
|rds|2

σ2
proc

exp

(
−|rds|

2

σ2
proc

· φ(l,k)
m

)
. (35)

In practical scenarios, |rpc|2 and |rds|2 can be approximated by |ĥ(l,k)
ω [m]|2, because they are

much stronger than ñk[m]. Besides, |ñproc[m]|2 can be estimated from those components in y
(l)
ω ,

where neither desired signal nor pilot contamination exist.

E. The Probability that the Main Lobes of Desired Signal and Pilot Contamination Overlap

In previous discussions, we assume the main lobes of desired signals and pilot contamination

from adjacent cells do not overlap. As a matter of fact, it is possible for the desired signals

to overlap with pilot contaminations from adjacent cells in space, and we will analyze the

probability in this section. To simplify notations, we define the following symbols:

DSm =


1, ∃b :

∣∣∣ω(l,k)
b −mω0

∣∣∣ < ω0,

0, otherwise;
and PCm =


1, ∃b, i :

∣∣∣ω(li,k)
b −mω0

∣∣∣ < ω0.

0, otherwise.

(36)

Given that a strong component of desired signals exists on mω0, the probability that strong

pilot contamination coexists is Pr(PCm = 1|DSm = 1). On the other hand, given that a strong

component of pilot contamination on mω0, the probability that strong desired signal coexists is

Pr(DSm = 1|PCm = 1). Then, we have the following theorem.

Theorem 2: When the number of BS antennas is very large, both Pr(PCm = 1|DSm = 1)

and Pr(DSm = 1|PCm = 1) are inversely proportional to BS antenna number. To be specific,

we have

Pr(PCm = 1|DSm = 1) = 12B/M + o(1/M),

P r(DSm = 1|PCm = 1) = 2B/M + o(1/M),
(37)

where o(1/M) indicates a component much smaller than 1/M .

The proof of Theorem 2 can be found in Appendix C. For massive MIMO, M is generally very

large, and it is safe for us to assume that desired signals do not overlap with pilot contaminations

in space.
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F. Computational Complexity

Due to the large number of antennas at BSs, it is important to maintain the computational

complexity of channel estimators at an acceptable level. The proposed channel estimation al-

gorithm contains three parts: the MF channel estimation, pilot contamination identification and

SF channel estimation. The complexity of MF channel estimator is O{Mτ 2}. The second part

contains two steps: the first step is to find both desired signals and pilot contaminations from

MF channel estimation, while the second step is to pick out the pilot contaminations from the

components identified in step one. For every user, the complexity of spatial spectrum analysis

is O{M log2M} through FFT. Considering K users per cell and the spatial spectrum analysis

of y
(l)
proc, the overall complexity of the second part is O{(K + 1)M log2M}. In the third part,

we can reorganize Equation (27) as ĥ
(l,k)
sf = ĥ

(l,k)
mf − U

(l,k)
P

(
U

(l,k)
P

H
ĥ

(l,k)
mf

)
. The complexity of

U
(l,k)
P

H
ĥ

(l,k)
mf is O{MP}, where P is the number of detected pilot contamination components in

space. Considering K users per cell, the complexity of the third part will be O{KMP}.

Generally, we have log2M < τ = K, while P should be smaller than 10. Therefore, the

total complexity of these three parts combined will be O{MK2}, almost identical to that of MF

estimator.

V. PERFORMANCE EVALUATION

In this section, we will conduct numerical simulations to compare the performance of the

proposed algorithm with existing ones, in terms of normalized channel estimation error, achieved

signal to interference and noise ratio (SINR) and achievable rate.

In the Monte Carlo simulations, we employ the channel model in Equation (3) with B = 3.

The simulation parameters are almost identical to those employed in Table [1], and they have

been specified in I. Same to [1], we consider interferences from all cells whose distance to

the target cell is less than eight cell-diameters. Therefore, there are totally 199 cells in our

simulations. As show in Table I, we assume a coherence time of 0.5 millisecond, equivalent

to seven OFDM symbols in LTE systems, while the frequency smooth interval is equal to 14

sub-carriers. Therefore, the channel can be viewed as constant for 98 time-frequency resource

blocks. The simulation results are presented in Figure 5, 6 and 7. Apart from the proposed

channel estimation based on spatial filter, we also present the simulation results for data-aided,

MF and SVD-based channel estimators.
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TABLE I
SIMULATION PARAMETERS

Path Loss Exponent 3.8
Cell Radius 500 m
Cell-Hole Radius 50 m
User Number / Cell 10
Antenna Number / BS 400
Pilot Length (τ ) 10
Frequency Smooth Interval 14 Carriers
Coherence Time 0.5 ms
Standard Deviation of Shadowing 8 dB
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Fig. 5. This figure shows the normalized channel estimation error of different channel estimators when cell-edge user has an
SNR of 0, 3, 6, or 9 dB.

In Figure 5, we can see that the data-aided channel estimator shows the worst performance.

As a matter of fact, by employing both pilot and data for channel estimation, data-aided channel

estimator can suppress pilot contamination to some extent. However, intra-cell interference will

be inevitable because the data sequences of different users in the same cell are not totally

orthogonal. Because intra-cell interference is generally stronger than inter-cell interference, the

data-aided channel estimator does not necessarily improve the overall performance. The SVD-

based and the proposed estimators have similar performance in terms of NMSE of channel
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estimations. However, for cell-edge users, the proposed estimator has a slight advantage. For

example, 95 percent user will experience an NMSE less than 9.5 dB if the proposed estimator

is employed; while that value for the SVD-based estimator is 10.5 dB. Besides, we can observe

that both the proposed channel estimator and the SVD-based one have a significant gain over the

MF channel estimator. For example, only around five percent users will experience an NMSE

larger than 10 dB for the proposed and SVD-based algorithm. As comparison, this number is

doubled for the channel estimators based on MF.

From Figure 5, we also notice that the performance of channel estimators in different SNR

are almost consistent. This is not surprising because the large antenna arrays at BSs can pro-

vide significant gains and boost actual SNR. In this case, system performance will be mainly

dependent on pilot contamination because noise is negligible. Similar results can be observed in

Figure 6 and 7.
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Fig. 6. This figure shows the achieved SINR of different channel estimators, given that zero-forcing is employed for data
detection. In different sub-figures, cell-edge users have an SNR of 0, 3, 6, and 9 dB, respectively.

In Figure 6, the achieved SINR is simulated based on zero-forcing symbol detector, which is

reported to have similar performance with more complicated detectors, due to the asymptotical

orthogonality of different users’ channel vectors in the same cell [1]. As we can see, the proposed

method outperforms the current ones in terms of achieved SINR. For example, when SNR equals
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Fig. 7. This figure shows the achievable rates of different channel estimators, given that zero-forcing is employed for data
detection. In different sub-figures, cell-edge users have an SNR of 0, 3, 6, and 9 dB, respectively.

0 dB, only 7 percent users will experience an SINR less than 0 dB for the proposed algorithm.

However, this number will be doubled for the other algorithms. These users are experiencing

low SINR because they are located at cell edges, leading to attenuated signal strength and strong

pilot contaminations. As we can observe from Figure 6, the SVD based channel estimator has the

worst performance, which seems to be contradictory to the results in Figure 5. As a matter of fact,

SVD based algorithm assumes that desired signals are always stronger than pilot contamination.

However, pilot contamination can be stronger than desired signals for cell edge users. As a

result, the CSI of some users may totally get lost and these users will experience very small

SINR. However, the NMSE of their channel estimation results is not necessarily large. For

example, when the channel state information of a specific user is totally lost, the NMSE of

channel estimation will be around 0 dB, which is not very bad. However, the achieved SINR

(in dB) will be infinitely small. Therefore, small NMSE does not necessarily lead to large

achieved SINR. By removing the assumption that desired signals are always stronger than pilot

contaminations, the proposed algorithm achieves a noticeable gain, because it can effectively

identify the spatial signatures of pilot contaminations and eliminate them. As a matter of fact,
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when pilot contamination is stronger, the proposed algorithm has a better chance to find it. To

be specific, two PDFs of φ(l,k)
m can be better isolated when pilot contamination is strong on mω0.

In Figure 7, we can observe similar results, because achievable rate increase monotonically with

achieved SINR.

VI. CONCLUSIONS

In this paper, we proposed an innovative channel estimation algorithm for massive MIMO

systems. The basic idea is to identify the spatial signatures of pilot contaminations from adjacent

cells and eliminate them by constructing a spatial filter. The stronger the pilot contamination

is, the better chance we have to identify it. This algorithm is especially helpful for cell-edge

users, because their signals can be overwhelmed by pilot contaminations from adjacent cells.

Compared with the currently available pilot decontamination methods, the proposed method has

two major advantages: first, no apriori statistical information is required; second, we do not need

to assume that desired signals are always stronger than pilot contaminations. As a matter of fact,

the probability that the second condition cannot be fulfilled for cell-edge users is too large to be

ignored. This algorithm is evaluated through simulations in channel estimation error, achievable

SINR and outage probability. Both simulation results and theoretical analyses are promising.

APPENDIX A

PROOF OF THE UPPER BOUND OF RESIDUAL ERROR

This part is the proof of the upper bound of the residual error in Eqn (12).

To begin with, we have

|αmodM (l+1−r)|2 =
1

M2

sin2 (β − 1 + r)π

sin2 (β − 1 + r)π/M
≤ 1

M2

1

sin2 (β − 1 + r)π/M
≤ 1

4(β − 1 + r)2
,

where we use the inequality 1 ≥ sin2 x ≥ 4
π2x

2 (|x| ≤ π/2). Similarly, we have

|αmodM (l+r)|2 ≤
1

4(r − β)2

Then, define βr = |αmodM (l+1−r)|2 + |αmodM (l+r)|2 and f(β) = 1
(r−β)2

+ 1
(r−1+β)2

.

∵ ∂f(β)
∂β

< 0, ∴ f(β) < f(0) = 1
r2

+ 1
(r−1)2

,

which leads to βr ≤ 1
4
( 1
r2

+ 1
(r−1)2

).
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When M = 2F ,

Res[R ] = 1−
R∑
r=1

βr =
F∑

r=R+1

βr, (38)

When M is very large, we can obtain the following inequality:

Res[R ] = lim
M→∞

F∑
r=R+1

βr ≤
1

4

[
lim
M→∞

F∑
r=R+1

1

r2
+ lim

M→∞

F∑
r=R+1

1

(r − 1)2

]
=
π2

12
+

1

4R2
−

R∑
r=1

1

2r2
,

(39)

in which we employed the well acknowledged limit lim
M→∞

∑M
r=1 1/r2 = π2

6
.

When M = 2F+1, we have Res[R ] =
F∑

r=R+1

βr+|αmodM (l−F )|2, where |αmodM (l−F )|2 ≤ 1/F 2.

When M approaches infinity, this component is negligible and the result is identical to that of

M = 2F .

As a result, regardless of whether M is odd or even, if we take the closest 2R components

to reestablish e [ω], the upper bound of residual error can be given as

Res[R ] ≤ π2

12
+

1

4R2
−

R∑
r=1

1

2r2
. (40)

APPENDIX B

JUSTIFICATION OF THE DISTRIBUTION OF λ
(l,k)
m

ĥ(l,k)
ω [m] =

B∑
b=1

a
(l,k)
b · f(ω

(l,k)
b −mω0) +

6∑
i=1

B∑
b=1

a
(li,k)
b · f(ω

(li,k)
b −mω0)︸ ︷︷ ︸

h
(l,k)
S,P [m]

+ñk[m]. (41)

By defining h
(l,k)
S,P [m] in Equation (41), Equation (19) can be simplified as

λ(l,k)
m =

∣∣∣h(l,k)
S,P [m] + ñk[m]

∣∣∣2 . (42)

When DSm = 0 and PCm = 0,
∣∣∣f(ω

(li,k)
b −mω0)

∣∣∣’s and
∣∣∣f(ω

(l,k)
b −mω0)

∣∣∣’s will be very small

because
∣∣∣ω(li,k)

b −mω0

∣∣∣ > ω0 and
∣∣∣ω(l,k)

b −mω0

∣∣∣ > ω0 hold for any given i and b. Therefore, the

absolute value of h(l,k)
S,P [m] will be very small in this case, and we have λ(l,k)

m ≈ |ñk[m]|2. Then,
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we can conclude that λ(l,k)
m follows exponential distribution as

f0

(
λ(l,k)
m

)
=

1

σ2
0

· exp
(
−λ(l,k)

m /σ2
0

)
, (43)

where σ2
0 = E

{
|ñk[m]|2

}
.

On the other hand, when DSm = 1 or PCm = 1,
∣∣∣h(l,k)

S,P [m]
∣∣∣ cannot be neglected, and λ

(l,k)
m

can be approximated by

λ(l,k)
m =

∣∣∣h(l,k)
S,P [m]

∣∣∣2 + 2<
{
h

(l,k)
S,P [m] · ñk[m]∗

}
+ |ñk[m]|2 . (44)

Given that signal is much stronger than noise, |ñk[m]|2 can be neglected and we can obtain

Equation (45).

λ(l,k)
m ≈

∣∣∣h(l,k)
S,P [m]

∣∣∣2 + 2
(
<
{
h

(l,k)
S,P [m]

}
· <{ñk[m]}+ =

{
h

(l,k)
S,P [m]

}
· ={ñk[m]}

)
. (45)

In Equation (45), the first part is a constant for a given realization of the channel, while the

second part follows zero-mean Gaussian distribution. Therefore, the overall PDF of λ(l,k)
m is given

in Equation (46)

f1

(
λ(l,k)
m

)
=

1√
4π
∣∣∣h(l,k)

S,P [m]
∣∣∣2 σ2

o

· exp

−
(
λ

(l,k)
m −

∣∣∣h(l,k)
S,P [m]

∣∣∣2 − σ2
o

)2

4
∣∣∣h(l,k)

S,P [m]
∣∣∣2 σ2

o

 (46)

In our case, λth is chosen to minimize the sum of false alarm and miss rates, which means

f0(λth) = f1(λth). Define

SNRo =
∣∣∣h(l,k)

S,P [m]
∣∣∣2 /σ2

o , (47)

and λth can be given as Equation (21).

The false alarm rate and miss rate will be

RFA =

∫ ∞
λth

f0(λ)dλ = e−λth/σ
2
o . (48)

while the miss rate is

RM =

∫ λth

−∞
f1(λ)dλ. (49)
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Replace λ with t = λ−(SNRo+1)σ2
o

2
√
SNRoσ2

o
, and Equation (49) can be rewritten as:

RM =
1

2
erfc

(
−λth − (SNRo + 1)σ2

o

2
√
SNRoσ2

o

)
, (50)

where erfc(x) is the complementary error function, defined as erfc(x) = 2√
π

∫∞
x
e−t

2
dt. Ac-

cording to Equation (21), The false alarm and miss rates are exclusively dependent on SNRo,

as shown in Equation (22a) and (22b), respectively.

APPENDIX C

PROOF OF THEOREM 2

Given that a strong component of desired signals exists on mω0, the probability that strong

pilot contamination coexists is bounded by

Pr(PCm = 1|DSm = 1) = 1−
(

1− 2

M

)6B

, (51)

and the right part can be expanded as Equation (52).

1−
(

1− 2

M

)6B

=
12B

M
+

3B∑
i=1

[(
6B

2i+ 1

)(
2

M

)2i+1

−
(

6B

2i

)(
2

M

)2i
]
−
(

2

M

)6B

=
12B

M
+

3B∑
i=1

(
6B

2i

)(
2

M

)2i(
2(6B − 2i− 1)

(2i+ 1)M
− 1

)
−
(

2

M

)6B

.

(52)

In the last line of Equation (52), 2(6B−2i−1)
(2i+1)M

− 1 decreases with i monotonically for 1 ≤ i ≤

3B − 1, which gives us

2

(6B − 1)M
≤ 2(2i+ 1)

(6B − 2i− 1)M
≤ 4B − 2

M
� 1. (53)

Therefore, we can decide that

Pr(PCm = 1|DSm = 1) <
12B

M
, (54)

which means Pr(PCm = 1|DSm = 1) decreases with the number of BS antennas at least

linearly. When BS antennas is very large, this probability approaches 0.

To find the lower bound of Pr(PCm = 1|DSm = 1), we can expand the right part of Equation
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(51) as Equation (55).

1−
(

1− 2

M

)6B

=
12B

M
−
(

6B

2

)(
2

M

)2

+
3B∑
i=2

[(
6B

2i− 1

)(
2

M

)2i−1

−
(

6B

2i

)(
2

M

)2i
]

=
12B

M

(
1− 6B − 1

M

)
+

3B∑
i=2

(
6B

2i− 1

)(
2

M

)2i−1(
1− 6B − 2i+ 1

Mi

)
.

(55)

In the last line of Equation (52), 6B−2i+1
Mi

increases with i monotonically for 2 ≤ i ≤ 3B, which

gives us
1

3MB
≤ 6B − 2i+ 1

Mi
≤ 6B − 3

2M
� 1. (56)

Therefore, we can obtain Pr(PCm = 1|DSm = 1) > 12B
M

(
1− 6B−1

M

)
.

On the other hand, given that a strong component of pilot contamination on mω0, the proba-

bility that strong desired signal coexists is

Pr(PCm = 1|DSm = 1) = 1−
(

1− 2

M

)B
. (57)

Similar to the above analysis, Pr(PCm = 1|DSm = 1) is bounded by bounded by

2B

M

(
1− B − 1

M

)
< Pr(DSm = 1|PCm = 1) <

2B

M
. (58)

Based on these discussions, Theorem 2 is proved.

APPENDIX D

CONDITIONAL PDF OF φ
(l,k)
m

Assume Xc’s (c = 1, 2, · · · , C) are C independent and normally distributed random variables,

and z =
∑C

c=1X
2
c . Then, z follows noncentral chi-square distribution, and the PDF is given as

fZ(z; k, µ) =
1

2
exp

(
−z + µ

2

)(
z

µ

)k/4−1/2

Ik/2−1(
√
µz) (59)

Based on Equation (29), define a random variable y given in Equation (60).

y = φ(l,k)
m 2|rpc|2/σ2

proc =

∣∣∣∣∣<{rpc}+ <
{
ñproc[m]s∗li,k

}
σproc/

√
2

∣∣∣∣∣
2

+

∣∣∣∣∣={rpc}+ =
{
ñproc[m]s∗li,k

}
σproc/

√
2

∣∣∣∣∣
2

(60)
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The PDF of ñproc[m]sli,k is identical to ñproc[m]. Therefore, the right hand side of Equation

(60) follows non-central chi-square distribution given by

fY (y) =
1

2
exp (−y + η

2
)I0 (
√
ηy) (61)

where η = 2|rpc|2/σ2
proc, and I0(·) is given in Equation (32). The CDF of y is

FY (y) = Pr(Y < y) =

∫ y

−∞
fY (v)dv. (62)

The CDF of φ(l,k)
m will be

FΦ

(
φ(l,k)
m

)
= Pr

(
Φ < φ(l,k)

m

)
= Pr(Y/η < φ(l,k)

m ) = Pr(Y < ηφ(l,k)
m ) = FY (ηφ(l,k)

m ), (63)

and the PDF can be obtained as

fpc(φ
(l,k)
m ) =

∂FΦ

(
φ

(l,k)
m

)
∂φ

(l,k)
m

=
∂FY

(
ηφ

(l,k)
m

)
∂φ

(l,k)
m

= ηfY (ηφ(l,k)
m ). (64)
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