
 1

Memorial University of Newfoundland

Engineering 4862 MICROPROCESSORS
Assignment 2

Unless otherwise noted, please show all relevant calculations, and explain your answers where
appropriate.

0. List all 8086/8088 registers that can be accessed as both words and bytes.

Accumulator AX AH AL

Base BX BH BL

Counter CX CH CL

Data DX DH DL

1. Use a memory map to show the contents of memory locations DS: 1000H to DS: 1004H after all of the

following instructions have executed:

Memory Modification
MOV AX, 56H None

MOV [1001H], AX [DS:1001] ← 56H
 [DS:1002] ← 00H

MOV [1003H], 9A5FH [DS:1003] ← 5FH

[DS:1004] ← 9AH

MOV [1000H], AL [DS:1000] ← 56H

2. Assume that (CS) = B795H; (DS) = 2000H; (SS) = 0AD4H; (ES) = 30FFH; (SP) = 00FFH; (BP) =

1DF7H; (AX) = 0B24H; (CX) = 1EE4H; (SI) = 3C00H; (DX) = 329FH.
a. Calculate the beginning and ending addresses for all of the segments.
 Segment Start (Base) End
 Code, CS=B795H B7950H C794FH
 Data, DS=2000H 20000H 2FFFFH
 Extra, ES=30FFH 30FF0H 40FEFH
 Stack, SS=0AD4H 0AD40H 1AD3FH

b. Suppose that the offset address for the next instruction to be fetched (that is, the contents of IP) is

902DH. Calculate the physical address from where the next instruction will be fetched.
 Segment: Code, CS=B795H
 PA = CS:IP = B795:9020 = C097DH

c. What will be the contents of BL and AX after the following instruction is executed? Give your

results in decimal and hexadecimal.
MOV BL, AL
BL ← AL, AX= 0B24H
So, BL=24H = 36D
 AL=24H (unchanged), AX= 0B24H=2852D

d. Calculate the physical addresses of the memory locations referred to in the following instructions
and the contents of all the location(s):

AND CX, [1200H]

 2

[1200] is the memory reference, the PA = DS:1200=21200H. Used to access one word.

OR ES:[0E8C9H], SI
ES for Segment override. [0E8C9H] for memory reference. PA = ES:E8C9H = 3F8B9H
Both 3F8B9H and 3F8BAH are referred.

PUSH DX
Memory reference is implicit, as the stack is used.
Stack address = SS:SP = 0AD4H:00FFH = 0AE3FH
The memory accessed is not this location, but at 2 less than this. A word is accessed, the
location 0AE3DH and 0AE3EH are used.

3. What is wrong with, or missing from, each of the following instructions:
a. MOV ES, 249EH
ES is a segment register. It is invalid to assign a segment register directly via an immediate operand.

b. MOV [BX+3EH], 2 (Hint: the use of PTR directive)
2 can be either a byte or a word operand. The assembler will complain because it does not know how
many bytes the value ‘2’ requires. Use BYTE PTR 2 or WORD PTR 2.

c. MOV [78H], [79H]

 Attempting to have a memory to memory data transfer. Invalid addressing mode.

4. In lab 1, we found that the MUN-88 single board computer has a number of mirror images. Without

replacing the 3x8 decoder or the current 2KB SRAM chip, propose a simple scheme to eliminate these
mirror images for the RAM and draw a sketch to show that. (Hint: The mirror images are caused by the
don’t care lines of the address bus. You can use those lines connect to chip select, enable pins of the
decoder or SRAM chips).
The mirror images are actually caused by the three most significant address lines, which are set to don’t
cares. One we can give a fixed pattern for those address lines, we will eliminate the confusion. There are
many solutions for this question. The diagram below show one possible solution. This requires the addition
of one 74LS32 chip (2 input OR gate). The important aspect of this scheme is that AB14 to AB 19 must be
all 0s in order to access the RAM. There must be no unused address lines. A similar scheme could be done
for the ROM, but all AB16-19 have to be 1.

5. Instruction XCHG achieves a swap between the source operand and the destination operand. (Consult

the 8086/88 user manual for more detailed information). Assume that the instruction XCHG does not
exist in the 8086 instruction set. Write a sequence of instructions to duplicate the instruction XCHG AL,

 3

DL. Note that the values in all other registers (including AH and DH) should be their original values
when your instruction sequence finishes.

PUSH CX Notes: 1. All stack operations are two bytes
MOV CL, AL 2. You can assume a memory location exists to act as the temporary store
MOV AL, DL
MOV DL, CL
POP CX

6. Can the 8-bit input port at location 911 be accessed using direct port I/O addressing? Give an instruction
sequence to copy the data from this port to register CL.
Direct port I/O addressing requires that the address of the I/O port fits into a byte (from 0 to 25510). Thus
91110 is too large, and indirect port addressing (Using DX) must be used. Note that Direct/ Indirect I/O
addressing is INDEPENDENT of the data size of the port (8-bit or 16-bit), and has nothing to do with
memory addressing. The instruction should be:
 MOV DX, 911 ; port address
 IN AL, DX ; Input 8-bit from 911
 MOV CL, AL ; copy data to CL
Also note that MOV CL, [911] is wrong! This refers to a memory location, not an I/O port.

7. When a CALL is executed, how does the CPU know where to return? What is the difference between a
FAR call and a NEAR call?
The address of the instruction immediately following the CALL is stored on the stack. The last instruction
of a called subroutine must be RET in order to the system to pop off the return address from the stack.
In the FAR CALL, both the CS and IP registers are saved on the stack, whereas in a NEAR CALL, only the
IP register will be saved on the stack.

8. Find the contents of the stack and stack pointer after the execution of the CALL instruction shown next:
Assume that SS:1296 right before the execution of CALL and SUM is a NEAR procedure.

 CS:IP
2450:673A CALL SUM
2450:673D DEC AH

IP = 673D will be stored in the stack at 1295 and 1294, therefore SS:1295 = 67 and SS:1294 = 3D.

And the stack pointer will point to 1294 then.

9. Translate one of the following two quotes to 8-bit ASCII format (ignore the names and dates) – (Text
book: Section 3.4):

a. “640K ought to be enough for anybody.” - Bill Gates, 1981

36 34 30 4B 20 6F 75 67 68 74 20 74
6F 20 62 65 20 65 6E 6F 75 67 68 20
66 6F 72 20 61 6E 79 62 6F 64 79 2E

b. “I think there is a world market for about 5 computers.”

– Thomas J. Watson, founder of IBM, 1943

49 20 74 68 69 6E 6B 20 74 68 65 72 65 20 69 73
20 61 20 77 6F 72 6C 64 20 6D 61 72 6B 65 74 20
66 6F 72 20 61 62 6F 75 74 20 35 20 63 6F 6D 70
75 74 65 72 73 2E

 4

10. Write your MUN student number and convert to its unpacked BCD binary equivalent (Text book:
Section 3.4).

Simply match the corresponding number:
0 – 00H (00000000) 1 – 01H (00000001) 2 – 02H (00000010)
3 – 03H (00000011) 4 – 04H (00000100) 5 – 05H (00000101)
6 – 06H (00000110) 7 – 07H (00000111) 8 – 08H (00001000)
9 – 09H (00001001)

eg. Student number : 9972563
decimal 9 9 7 2 5 6 3
BCD 1001 1001 0111 0010 0101 0110 0011
Or HEX 09H 09H 07H 02H 05H 06H 03H

11. Find the precise offset location in memory of each ASCII character or data in the following use a

memory map (Text book: Section 3.4 for ASCII numbers):
 ORG 20H
 Data1 DB 73H, 2FH
 DS:0020 73 DS:0021 2F

 Data2 DB “737 3527”
 DS:0022 37 DS:0023 33 DS:0024 37
 DS:0025 20 DS:0026 33 DS:0027 35
 DS:0028 32 DS:0029 37

 ORG 30H
 Data3 DW 2560H, 101100010101B
 DS:0030 60 DS:0031 25 DS:0032 15
 DS:0033 0B

 ORG 40H
 Data4 DD 25684FC4H
 DS:0040 C4 DS:0041 4F DS:0042 68
 DS:0043 25

 Data5 DQ 7F5EC4527271FEH
 DS:0044 FE DS:0045 71 DS:0046 72
 DS:0047 52 DS:0048 C4 DS:0049 5E
 DS:004A 7F DS:004B 00

12. It is common practice to save all registers at the beginning of a subroutine. Assume that SP=1288H

before a subroutine CALL. Show the contents of the stack pointer and the exact memory contents of the
stack after PUSHF, for the following:

 1132:0450 CALL PROC1
 1132:0453 INC BX
 ……. ……

 PROC1 PROC
 PUSH AX
 PUSH BX
 PUSH CX
 PUSH DX
 PUSH SI
 PUSH DI
 …
 …
 PROC1 ENDP

 5

 When the procedure is called, IP, which points to the next instruction to be executed after the CALL, is
saved on the stack since it is a NEAR procedure. After the CALL and all PUSH instructions have been
executed, the stack is as follows with SP=127A
 SS:127A ← DI
 SS:127C ← SI
 SS:127E ← DX
 SS:1280 ← CX
 SS:1282 ← BX
 SS:1284 ← AX 1285 = AH, 1284 = AL
 SS:1286 ← IP 1287 = 04, 1286 = 53
 SS:1288

13. The following program adds four words and saves the result. The program contains some errors, fix the

errors and make the program run correctly:

TITLE PROBLEM PROGRAM
PAGE 60, 132
STSEG SEGMENT
 DB 32 DUP(?)
STSEG END should be ENDS, Segment should end with ENDS
;---
DTSEG SEGMENT
DATA DW 1234H, 3344H, 5FE2H, 85FAH
 ORG 10H
SUM DW ?
DTSG ENDS Label should match
;---
CDSEG SEGMENT
START: PROC FAR Without : since it is a non-opcode generating instruction
 ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG
 MOV DS, DTSEG Could not move directly, should go through a register
 Normally use MOV AX, DTSEG and MOV DS, AX
 MOV CS, 4 Could not move an immediate number to CS register
 MOV BX, 0
 MOV DI, OFFSET DATA
LOOP1 ADD BX, [DI Loop1 should have a colon :
 INC DI
 DEX BX should be DEC
 JNZ LOOP1
 MOV SI, OFFSET RESULT
 MOV [SI], BX
 MOV AH, 4CH
 INT 21H
CDSEG: ENDS No : for CDSEG
START ENDP This line should be placed before the previous line
 END CDSEG should be START

14. Write an Assembly Language Program that summarize eight unsigned byte numbers stored in memory

and store the result back to the next memory location. The data segment can be defined as following:
DTSEG SEGMENT

Data DB 23H, 34H, 32H, 45H, 1FH, 27H, 7FH, 90H
Result DW ?

DTSEG ENDS
(Hint: 1. Use loop to write an efficient code. 2. Pay attention to how to handle the carry bit. You can use
a 16-bit register to hold the result, and then you don’t need to worry about the carry)

 6

TITLE ADDING 8 BYTES
 PAGE 60, 132
 STSEG SEGMENT
 DB 64 DUP (?)
 STSEG ENDS

;--
DTSEG SEGMENT

Data DB 23H, 34H, 32H, 45H, 1FH, 27H, 7FH, 90H
Result DW ?

DTSEG ENDS
;--
CDSEG SEGMENT
MAIN PROC FAR
 ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG

 MOV AX, DTSEG
 MOV DS, AX
 MOV CX, 8 ; COUNTER FOR 8 NUMBERS
 MOV SI, OFFSET DATA
 SUB AX, AX ;CLEAR AX=0
REP: SUB BX, BX ;CLEAR BX=0
 MOV BL, [SI]
 ADD AX, BX
 INC SI
 LOOP REP
 MOV RESULT, AX ;SAVE RESULT BACK

MOV AH, 4CH
INT 21H

MAIN ENDP
CDSEG ENDS
 END MAIN

Notes: This is just one example, should have many different ways to write this program.

