
 1

Memorial University of Newfoundland

Engineering 4862 MICROPROCESSORS
Assignment 4 Solution

Unless otherwise noted, please show all relevant calculations, and explain your answers where
appropriate.

0. Write a sequence of instructions (that is, not a full program with TITLE, ASSUME, etc.) that

checks whether the memory in a full 64KB segment is functioning correctly. Assume that register
AX contains the segment to be checked. Use the string instruction STOSB to load the byte AAH
into all 64K locations, and then use LODSB to check that AAH was correctly stored at each of the
locations. If the wrong value is read, then call a fictitious subroutine MemError. Otherwise, call
Function 4CH of DOS INT 21H to exit.

; Instruction sequence to check 64KB of memory using STOSB and LODSB
; Initialize
 MOV DS, AX ; Set segments
 MOV ES, AX
 CLD ; Set direction flag for increments

; Store 64K byte values to memory
 MOV DI, 0 ; Set starting offset
 MOV AL, 0AAh ; Set test value
 MOV CX, 0FFFFh ; Set for 64K-1 locations
 REP STOSB ; Store test value
 STOSB ; Extra store for total of 64KB

; Check that values have been stored correctly
 MOV SI, 0 ; Set starting offset
 MOV AH, 0AAh ; Set compare pattern
 MOV CX, 0 ; Set maximum loops (64KB)
Again: LODSB ; Load value from memory
 CMP AH, AL ; Is value valid?
 JNE HandleError ; No, there is an error in memory.
 LOOP Again ; Continue comparing
 JMP Exit ; All loaded values are valid
HandleError: CALL MemError ; Error, call subroutine.
Exit: INT 6

Notes:

I stated to at least one person that loading register CX with 0 before execution of the REP STOSB instruction
would provide for automatically storing to 65536 (64K) locations. However, that is not the case; if you try the
above program in DEBUG with CX set to 0, then STOSB will not execute at all. This corroborates the
description of REP in the Intel Handbook, which states that REP adds a do while structure to string operation.
On the other hand, LOOP functions differently. It first decrements CX, and then checks to see if it is 0. If not,
it jumps. Thus if CX is 0, then LOOP will jump 65536 times, as required by the question.

In your implementation, you do not need to call INT 6 after you call the subroutine.

 2

1. Read Intel 8086/88 User Manual page 6-53 to 6-55: understand how the instruction is encoded to

and decoded from machine code. Use the two tables that followed (table 6-22 and 6-23); do the
following two questions. Convert the following hexadecimal machine codes to assembly language
mnemonics. State what each of the byte fields mean (Table 6-23 from page 6-64 to page 6-69).
a. B8 00 20
b. 8E D8
c. 46
d. 90
e. 89 7C FE
f. 75 F7
g. E2 EF

h. 26 80 07 78

a. B8 00 20

B8 = MOV AX, IMMED16
 00 = Data-lo
 20 = Data-hi

Answer: MOV AX, 2000h

b. 8E D8

 8E = MOV SEGREG, REG16 / MEM16

D8 = 2nd byte: MOD 0 SR R/M
 11 0 11 000
 MOD = 11 Register Mode
 SR = 11 Segment register DS (see page 3-57) – operand 1
 R/M = 000 Register AX – operand 2

Answer: MOV DS, AX

c. 46

 46 = INC SI

Answer: INC SI

d. 90

 90 = NOP

Answer: NOP

 3

e. 89 7C FE

 89 = MOV REG16 / MEM16, REG16 (note error in table 6-23)
 7C = 2nd byte: MOD REG R/M
 01 111 100
 MOD = 01 Memory Mode, 8-bit displacement follows
 REG = 111 DI – operand #2
 R/M = 100 (SI) + D8 - operand #1
 FE = 8-bit signed displacement
 11111110

2’s complement: 00000010 = 2
 Thus the displacement is –2

Answer: MOV [SI]-2, DI

f. 75 F7

 75 = JNE/JNZ short-label
 F7 = IP – INC8 (8-bit signed offset to add to IP)
 11110111
 2’s complement: 00001001 = 9
 Thus the offset is –9

Answer: JNE –9 (that is, jump back 9 machine code bytes if not equal)
 or JNZ -9

g. E2 EF

 E2 = LOOP short-label
 EF = IP – INC8 (8-bit signed offset to add to IP)
 11101111
 2’s complement: 00010001 = 17
 Thus the offset is –17

Answer: LOOP –17 (loop back 17 machine bytes)

h. 26 80 07 78

 26 = Segment override – ‘ES:’
 80 = One of several choices; look at bits 3, 4, & 5 of next byte
 07 = 00000111 Bits 3, 4, & 5 are ‘000’, so instruction is
 ADD REG8 / MEM8, IMMED8
 MOD = 00 Memory mode, no displacement follows
 R/M = 111 (BX)
 78 = 8-bit immediate value

 Note: instruction must have BYTE PTR to indicate an 8-bit operation

Answer: ADD BYTE PTR ES:[BX], 78h

 4

2. Convert the following instructions to machine code – give your answers in hexadecimal. State what

each of the bit fields mean.
i. PUSH BX
j. MOV [SI+490], SP
k. OUT DX, AL
l. POPF
m. AND AX, [BX+DI+2Dh]
n. ADD DS:[BP], DX Note: you will have to ‘add’ a displacement

o. XOR AL, [BX+DI-36H]
p. MOV [DI+476], ES

a. PUSH BX – two possible answers

Memory or Register Operand

11111111 mod 110 r/m

 mod = 11 Register Mode (r/m is treated as a “reg” field)
 r/m = 011 Register BX

Answer #1: FF F3

Register Operand

01010 reg

 reg = 011 Register BX

Answer #2: 53

b. MOV [SI+490], SP

Memory or Register Operand to/from Register Operand
 100010 d w mod reg r/m disp-lo disp-hi

 d = 0 From register
 w = 1 Word operands (SP is a 2 byte register)
 mod = 10 Memory Mode, 16-bit displacement follows
 reg = 100 Register SP
 r/m = 100 EA = (SI) + D16
 disp = 1EAh Displacement = 490 = 1EAh

Answer: 89 A4 EA 01

c. OUT DX, AL

Variable Port

1110111w

 w = 0 Byte operand (AL is a 1 byte register)
Answer: EE

 5

d. POPF

10011101

Answer: 9D

e. AND AX, [BX+DI+2Dh]

Memory or Register Operand with Register Operand
 001000 d w mod reg r/m disp-lo

 d = 1 To register
 w = 1 Word operands (AX is 2 bytes large)
 mod = 01 Memory Mode, 8-bit displacement follows (2Dh)
 reg = 000 Register AX
 r/m = 001 (BX) + (DI) + D8
 disp = 2D Displacement is 2Dh, which can fit in a 1 byte signed number
Answer: 23 41 2D

f. ADD DS:[BP], DX

Segment override: It is a bit tricky finding the prefix byte for segment overrides. If you look in Table 6-22 of
the Intel User’s Manual, on page 6-61, you will see that the last entry is:
 SEGMENT=Override prefix 001 reg 110
The reg field is actual a segment register field, and you can use the Segment column of the “reg” Field Bit
Assignments chart on page 3-57 to determine how to set it.
 Segment DS Override: 001 11 110 = 3E

Note: you will have to ‘add’ a displacement
The addition of a displacement to the memory reference (that is, [BP]), is needed because there is no
encoding for [BP]. Logically, the mod field should be 00, and the r/m field should be 110. But that is a
special case, for when a direct address is used (something like [1000h]). To encode, you will have to rewrite
the instruction into the functionally equivalent form:
 ADD DS:[BP+0], DX

Memory or Register Operand with Register Operand
 000000 d w mod reg r/m disp-lo

 d = 0 From register
 w = 1 Word operands (DX is 2 bytes large)
 mod = 01 Memory Mode, 8-bit signed displacement follows
 reg = 010 Register DX
 r/m = 110 (BP) + D8
 disp = 00 Displacement is 0

Answer: 3E 01 56 00

g. XOR AL, [BX+DI-36H]

Memory or Register Operand with Register Operand
 001100 d w mod reg r/m disp-lo

 d = 1 To register
 w = 0 Byte operands (AL is 1 byte large)
 mod = 01 Memory Mode, 8-bit displacement follows
 reg = 000 Register AL
 r/m = 001 (BX) + (DI) + D8
 disp Displacement is –36h, which can fit in an 8-bit 2’s complement form

 6

 36h = 0011 0110b -> (2’s comp) -> 11001010b = CAh = disp

Answer: 32 41 CA

h. MOV [DI + 476], ES

Segment Register to Memory or Register Operand
 10001100 mod 0 reg r/m disp-lo disp-hi

 mod = 10 Memory Mode, 16-bit displacement follows
 - Note that 476 is too large for an 8-bit signed number!
 reg = 00 Register ES (note that this is a segment register, and thus is 2 bits large)
 r/m = 101 (DI) + D16
 disp = 01DC Displacement is 47610 = 1DC16

Answer: 8C 85 DC 01

3. The following bytes are found in order somewhere in memory. Assuming they are machine codes,

decode the values into meaningful assembly language mnemonics.
B9 00 12 D0 C0 E8 C8 E2 F9

B9 – MOV CX, ImmeD16
 The next two bytes are the immediate 16-bit value loaded into CX (00 12 -> 1200H)
 MOV CX, 1200H

D0 – One of eight possibilities (ROL, ROR, RCL, etc.), so use the next byte.
 C0 = 11000000. The first two digit (MSB) “11” is MOD and “11” means that r/m = reg field. The
next three digits “000” indicates that ROL Reg8, 1. The last three digits (LSB) is “000”, it is R/M field and
represent AL.
 ROL AL, 1

E8 – CALL Near-proc
 Indicates that there is a call to a subroutine in the same segment. The next two bytes (IP-INC-Lo and
IP-INC-Hi) give a signed 16-bit displacement from the current value of IP.
 Disp = E2C8 (negative)
 = 1110001011001000b -> -0001110100111000b
 = - 1D38H = -7480D
 CALL [IP-7480]

F9 – STC

4. Use full segment definition, write a DOS compatible program that: a) clears the screen, b) set the cursor

to screen position row = 10 and column = 5, c) displays the prompt “Please enter an 8-digit number: ”, d)
get the keyboard input and save the number to a buffer area in the memory (you define), e) sort the
number on its ascending order and save them to another buffer for display. For example, if the input
number is 29034765, then after your sort, the result should be 02345679. You can assume that the
number for each digit is non-repeat but actually the repeated case is the same, f) after your sort, change to
the start of next new line, output “The sorted number is: ” and the number, g) exit use DOS function
4CH. Write task a) and b) using subroutines. Test your code on PC by yourself.

;Tasks:
;(1) Clear the screen use subroutine
;(2) Set the cursor to ROW 10 and COLUMN 5 on the screen use subroutine
;(3) Output a prompt string: "Please enter an 8-digit number:"
;(4) Accept keyboard input: (put to buffer INPUT_BUF)
;(5) Sort the number on its ascending order
;(6) move the sorted number to display buffer (OUTPUT_BUF)
;(7) Change to a new line and Output string: "The sorted number is :" and the number and then exit

 7

TITLE Example
PAGE 120, 60
;-------------------------------
LF EQU 0DH
CR EQU 0AH
;-------------------------------
STSEG SEGMENT
 DB 64 DUP(?)
STSEG ENDS
;-------------------------------
DTSEG SEGMENT
 PROMPT1 DB 'Please enter an 8-digit number:','$'
 PROMPT2 DB LF,CR,'The sorted number is : ',LF,CR,'$'

 INPUT_BUF LABEL BYTE
 SIZE_IBUF DB 09H
 INUMBER DB 00H
 INPUT_DATA DB 9 DUP(0FFH)

DTSEG ENDS
;-------------------------------
CDSEG SEGMENT
MAIN PROC FAR
 ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG, ES:DTSEG
 MOV AX, DTSEG
 MOV DS, AX
 MOV ES, AX

 CALL CLEAR
 CALL CURSOR

 MOV AH, 09H ;Prompt digit inputs
 MOV DX, OFFSET PROMPT1
 INT 21H

 MOV AH, 0AH ;get inputs
 MOV DX, OFFSET INPUT_BUF
 INT 21H

 MOV BX, 7 ;sort the number using natural sort method
 MOV SI, OFFSET INPUT_DATA
REP0: MOV DI, SI
 ADD DI, 1

 MOV CX, BX
REP1: MOV AL, [SI]
 MOV AH, [DI]
 CMP AH, AL
 JA CONT0

 MOV [SI], AH
 MOV [DI], AL

CONT0: INC DI
 LOOP REP1

 INC SI
 DEC BX
 JNZ REP0

 8

 MOV AH, 09H ;send the output prompt
 MOV DX, OFFSET PROMPT2
 INT 21H

 MOV DX, OFFSET INPUT_DATA ;prepare for the sorted sequence output
 MOV BX, DX
 MOV BYTE PTR [BX+8], '$'
 MOV AH, 09H ;output the sorted sequence
 INT 21H

 MOV AH, 4CH
 INT 21H

MAIN ENDP

;--------------------------------CLEAR THE SCREEN
CLEAR PROC NEAR
 MOV AH, 06
 MOV AL, 00
 MOV BH, 07
 MOV CX, 0000
 MOV DX, 184FH
 INT 10H
 RET
CLEAR ENDP

;--------------------------------MOVE CURSOR TO THE POSITION
CURSOR PROC NEAR
 MOV AH, 02
 MOV BH, 00
 MOV DL, 00 ; columns
 MOV DH, 00 ; rows
 INT 10H
 RET
CURSOR ENDP

;--------------------------------
CDSEG ENDS
 END MAIN

