
ENGINEERING 4862 MICROPROCESSORS LAB 2

 �

/DERUDWRU\��� ,QWURGXFWLRQ�WR�$VVHPEO\�3URJUDPPLQJ�

Last Revised: May 2000

1 Objectives
With the completion of this lab, you should be able to:

• Assemble, link, download, and run machine-language programs

• Use MASM to find syntax errors

• Use MUN-88 Monitor Commands to debug logic errors

• Write some simple 8086/8088 assembly language programs

2 Introduction
In this lab, you will write assembler code to perform certain simple I/O operations, in order
to gain familiarity with the Intel 8086/8088 software. You will then assemble, link and
download the machine code to the MUN-88 single board computer, and finally test your
programs.

You do not need to submit any comments or code for section 3; you do for sections 4 & 5.

3 Assemble, Link, Convert, Download
Using a text editor, such as MS-DOS EDIT or Windows Notepad, create a new file called
lab2a.asm and enter the following code into that file:

 TITLE hello
TEXT SEGMENT
 ASSUME cs:TEXT,ds:TEXT,es:TEXT

start: mov ax, cs ; Always start with load ds,es
 mov ds, ax
 mov es, ax
; This code is the same as that used in the previous lab
 mov cx, 8
 mov al, 11111110b
do_it: out 30h, al
 rol al, 1
 call delay_10ms
 loop do_it
 int 6 ; Return to monitor

delay_10ms: mov dx, 2000h ; Delay subroutine
rep1: dec dx
 jnz rep1
 ret
; The following two lines and the first three contain assembler
directives
TEXT ENDS ; End Segment
 END start

LAB 2 ENGINEERING 4862 MICROPROCESSORS

 ��

Before proceeding further, notice a few important points in the above code. Microsoft
assembler requires that you include these first three lines and the last two lines in any
8086/8088 assembler program for successful assembly. There are several possible
variations of these assembler directives, but they are not important for these simple
programs. The TITLE of the program can be anything that you choose. There should be a
label at the beginning of the assembler code (here, start), and this label should be
specified after the last END. The last instruction executed in your program should be int 6 .
This hands control back to the MUN-88 monitor upon completion of the program execution.
Any other instruction may cause the system to crash.

��� $VVHPEOLQJ	/LQNLQJ

You should now assemble the program with the Microsoft assembler. If you haven’t
already done so, open an MS-DOS window using the Windows NT sequence Start ->
Program Files -> MS-DOS prompt for MUN-88 . This is important because a number of
necessary directories are added to the command path.

At the DOS prompt, switch directories so that you are in the same directory as where you
saved the above file. When you type the command masm lab2a , you will encounter an
exchange similar to the following. The commands are in bold.

M:> masm lab2a

Microsoft (R) Macro Assembler Version 5.10

Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [lab2a.OBJ]: (press ENTER)

Source listing [NUL.LST]: lab2a

Cross-reference [NUL.CRF]: (press ENTER)

 47752 + 410931 Bytes symbol space free

 0 Warning Errors

 0 Severe Errors

M:>

The assembler first produces an object file containing the machine code of your program
(lab2a.obj). The assembler produces this file by default, and thus you do not need to type
in the full name.

The next file is a list file. The assembler does not create this file automatically, so you must
type in a name for it (in this case, lab2a , or lab2a.lst). If there are any syntactic errors in
your code, the assembler reports it through severe errors and warnings. The list file would
help you pin down the location and the probable cause of any such error. The list file also
shows the actual machine code generated by the assembler. If there are errors, fix them in
the assembler file and run the assembler again.

You don’t need the cross-reference file, so press ENTER to skip its generation.

For the purposes of submission, print out the list file. (If you use Windows to print, you may
save paper by printing 2 up per page – see the layout section of Print Properties dialog).

After successful assembly, invoke the linker by typing in following commands:

M:> link lab2a

ENGINEERING 4862 MICROPROCESSORS LAB 2

 ��

Microsoft (R) Overlay Linker Version 3.64

Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Run File [lab2a.EXE]: (press ENTER)

List File [NUL.MAP]: (press ENTER)

Libraries [.LIB]: (press ENTER)

LINK : warning L4021: no stack segment

M:>

Ignore the linker warning about a missing stack segment. The linking process results in the
creation of an executable file named lab2a.exe . In order to create a file that will run on the
MUN-88, convert the executable file into a binary file by using the following DOS
command:

M:>exe2bin lab2a

The binary file lab2a.bin is now ready for downloading to the MUN-88 board.

��� 'RZQORDGLQJ

You will not be using Kermit to communicate with MUN-88, but a new program. It is called
Terminal, and is located on your local drive, under mun88\software\ . This drive should
automatically be mapped (probably to drive L:) when you log on to a Windows NT
computer in the lab. Use the Windows Explorer to open the directory L:\mun88\software\ ,
and double-click on Terminal.exe to start it.

You will then be presented with two windows – a terminal window (see Figure 2-1) and a
download window (see Figure 2-2).

)LJXUH ���� 7KH PDLQ 081��� 7HUPLQDO ZLQGRZ

)LJXUH ���� 7KH 081��� 'RZQORDGHU ZLQGRZ

LAB 2 ENGINEERING 4862 MICROPROCESSORS

 ��

If the MUN-88 board is turned on, you will automatically be connected to it. The status bar
in the MUN-88 Downloader window will indicate if you have been successful in
connecting. If it reports “Connected”, then you should see the dot-prompt of the MUN-88
Monitor in the MUN-88 Terminal window. If instead you see another character, such as an
up arrow, then the baud rate of the board is incorrect. Switch the first 3 DIP switches off,
and reset the board. You should then see the MUN-88 welcome message.

Free memory in the MUN-88 starts at location 0032H:0000H, or physical location 00320H.
Since the board has 2KB of RAM, you may store your generated machine code anywhere
between 00320H and 007FFH. Thus you may store multiple programs at different locations
in RAM at the same time. As long as you do not turn off the power, the code should be
stored safely.

For this program, store it starting at the free memory location. Invoke the download
command in the MUN-88 Terminal by typing:

. DL 32:0

Ready to download...

You should then see the “Ready to download…” message displayed, and no dot-prompt.
The MUN-88 is now in a special state where it expects to receive machine code bytes on
the serial connection.

Activate the MUN-88 Downloader window by selecting it with the mouse. Click on the
Browse… button to select your binary file. After selecting the file, the full name and path
will appear in the MUN-88 Downloader window, and the Download button will become
selectable. Click on the button to download the code. You should quickly see the message
in the status bar change to a message saying “Sent 29 bytes on COM2”, and the MUN-88
Terminal window should have the message “Download OK.”

��� ([HFXWLQJ

Switch back to the MUN-88 Terminal window by clicking on it. Run your program.

. GO 32:0

Program Terminated at 0032:0014

.

You should see the same pattern on the LEDs as in Lab 1. Congratulations on creating
your first assembly language program!

ENGINEERING 4862 MICROPROCESSORS LAB 2

 ��

4 Debugging
Gaining experience with debugging is very important; if a program does not work, you need
to be able to determine why. Simply looking at the ASM file you wrote often does not work.
In this part of the lab, you will use several debugging features available to you in MASM
and in the MUN-88 Monitor.

Use a web browser to go to http://www.engr.mun.ca/~charlesr/eng 4862/labs , and
download the file called lab2b.asm to your directory. You can do this by right-clicking on
the name, and selecting Save As… in the pop-up menu that appears. You will use this file
to examine some of the syntax reporting mechanisms of MASM, and to try out the
debugging facilities provided by the MUN-88 Monitor.

Look at the ASM file using a text editor. Describe what this program is supposed to do.

��� 6\QWD[HUURUV DQG WKH /67 ILOH

The list file generated by MASM is very useful for finding syntax errors in your code. This
includes misspelled and invalid assembly mnemonics, as well as mistakes with labels and
operands. The lab2b.asm file has several errors.

Using an MS-DOS window, run MASM on the lab2b.asm file. Make sure you generate a
list (.LST) file.

You should receive 10 severe errors, as follows:

lab2b.ASM(21): error A2105: Expected: instruction, directive, or label

lab2b.ASM(25): error A2009: Symbol not defined: FFH

lab2b.ASM(39): error A2050: Value out of range

lab2b.ASM(46): error A2029: Division by 0 or overflow

lab2b.ASM(53): error A2029: Division by 0 or overflow

lab2b.ASM(57): error A2029: Division by 0 or overflow

lab2b.ASM(61): error A2029: Division by 0 or overflow

lab2b.ASM(65): error A2029: Division by 0 or overflow

lab2b.ASM(69): error A2029: Division by 0 or overflow

lab2b.ASM(73): error A2029: Division by 0 or overflow

 47764 + 410903 Bytes symbol space free

 0 Warning Errors

 10 Severe Errors

You must fix these errors before the assembler will create an object file. Open up the list
file in a text editor to see the location of the errors, and an indication of how to fix them. The
following shows a portion of the resulting list file.

LAB 2 ENGINEERING 4862 MICROPROCESSORS

 ��

The first error is located after what should be the first line of code. No machine code was
generated because the instruction is not spelled correctly. Now that you know the problem,
fix the instruction in the original ASM file .

Go through the rest of the list file. What are each of the errors? Fix all ten errors, and try
running MASM again. You should be able to successfully assemble the file. Link the OBJ
file, and create the BIN file. Use the Terminal program to download the BIN file to the
MUN-88. The MUN-88 Downloader should report that it has sent 80 bytes.

��� 6LQJOH�6WHS

Now that the file is on the MUN-88, try to execute it. Describe what happens. Is this
expected? Try toggling DIP switches 1 or 8. Does the program stop?

If you have to, press the reset button. Turn on the Monitor single-step mode by issuing the
correct command at the MUN-88 Monitor dot-prompt. When you start the program now,
you should see a report similar to the following:

. go 32:0

AX=0032 BX=00FF CX=0000 DX=0000 SI=0000 DI=0000 SP=0310 BP=0000

CS=0032 DS=0032 ES=0032 SS=0000 IP=0002 O=0 D=0 I=0 T=1 S=0 Z=0 A=0 P=0 C=0

0032:0002 8E

.

The Monitor executes the first instruction, and then halts the program. The contents of all
the registers are displayed; their values reflect their state after the first instruction has
completed. Thus you can see that the first instruction of the program (MOV AX,CS) has
completed successfully.

The line “0032:0002 8E” shows the location and first byte of the next instruction to be
executed. What is this instruction?

 TITLE Gun Fight

 0000 MYSEG SEGMENT

 ASSUME cs:MYSEG, ds:MYSEG, es:MYSEG

 0000 main: mav ax, cs ; Set up the segments

lab2b.ASM(21): error A2105: Expected: instruction, directive, or label

 0000 8E D8 mov ds, ax
 0002 8E C0 mov es, ax

These four hex
digits give an
offset for the
code.

Generated machine code
corresponding to the assembly
code on same line.

A description of the
syntax error on the
previous line.

ENGINEERING 4862 MICROPROCESSORS LAB 2

 ��

Using the list file, determine and state the offset of the first IN instruction. If you issue go
without a segment and offset, the instruction uses the CS and IP registers to determine the
next instruction. Issue the go several times, until the IN instruction completes execution.
Based on the value in the AL register, has the IN instruction worked correctly? What value
is in the AL register? What value did you expect?

Use the list file to determine what the problem is. Does this problem occur elsewhere in the
code? Fix the problem in the ASM file, then assemble, link, convert, and download to the
MUN-88 board.

Turn off single step mode, and run the program. Has this fixed all of the errors? Does
switching DIP number 1 or 8 stop execution? What happens to the LEDs when you move
one of the switches?

��� %UHDNSRLQWV

Until you switch DIP number 1 or 8, the program will likely run for a very long time before
the LEDs will stop blinking. For some reason, the program is not finishing the double loop
where the lights blink.

Using the list file, determine the offsets of the instructions dec dx and dec cx . Using MUN-
88 Monitor commands, set a breakpoint at each of these offsets. Type go 32:0 ; at what
breakpoint does the program stop executing? To which instruction does this correspond?
Report the value of register that will be modified, and type go . What happens? Type go a
few more times, and report the results. Does the program seem to be working as expected
at this point?

To reach the other breakpoint, you will have to disable only the first breakpoint by using the
correct Monitor command. Do this, and type go . What instruction will be executed the next
time you type go? What is the value of the corresponding register? Type go a few more
times, and comment on the results. When will the LEDs finally stop blinking?

Based on what you have found out from the breakpoints, fix the ASM file by loading the
appropriate register with a value before the line labeled rep2. A value between 20 and 40 is
recommended. Assemble, link, convert and download this file.

Clear the breakpoints, and use the new list file to set a breakpoint at the previously
offending dec instruction. Run the program again, and check that the program is now
running correctly.

Clear all breakpoints and run the program. Test the correctness of the program by
switching both DIPs number 1 and 8 before and after the LEDs have stopped blinking.
Briefly describe what happens. Then challenge some classmates to a duel.

Print out the list file of your final, correct version of the program. You might wish to remove
the symbols at the top of the file, which are printer commands to start a new page. Indicate
on the listing all of the changes you have made.

Optional:

You can use the list file to determine the exact location, in your machine code, of the number of blinks. Using the MUN-88
Monitor command modify, you can change the number of blinks without re-assembling your code. Try it out!

LAB 2 ENGINEERING 4862 MICROPROCESSORS

 ��

5 Programming
This section of the lab requires you to write two programs in assembly language, assemble
them using MASM, and link and convert them using exe2bin .

Use the following code as a base for your programs. Replace the words in bold with the
appropriate text.

��� 3URJUDP�

Write an assembler program to read the DIP switches and to load the DH register with
this result. Then display the value on the DIP switches on the LEDs. A switch that is ON
should light the corresponding light in the LEDs.

Assemble, link, download and test proper execution of your program for various switch
settings. Print a copy of your LST file , and demonstrate your program to a TA. Make
sure you place appropriate comments in your code.

��� 3URJUDP�

Write a program to light up the odd numbered lights (as numbered on the board), wait
about 1 second, and then light up the even numbered lights. The program must then
wait for the DIP switch at bit 3 (not switch number 3!) to change position. The program
should then clear the lights, and terminate.

6 Submission
At the end of the lab submit print-outs of the three list files with handwritten comments on
the success of each program. Save copies of all your programs.

TITLE your title here
MYSEG SEGMENT

ASSUME cs:MYSEG, ds:MYSEG, es:MYSEG

main: mov ax, cs ; Always start with load ds,es

mov ds, ax
mov es, ax

code

; Apply comments liberally
more code

int 6 ; return to Monitor

MYSEG ENDS ; End Segment

END main

At the end of your main code body,
use the int 6 instruction to return
control to the MUN-88 Monitor.

