🚆 Memorial

Faculty of Engineering and Applied Science

Engineering 4862 Microprocessors

Lecture 23

Cheng Li EN-4012 licheng@engr.mun.ca

Input / Output Instructions

- Since 8086/88 has a 16-bit data bus internally, it is capable of transferring 16-bit data to or from AX. → This requires having two port addresses, one for each byte!
- Example: AX = 9876H, Port # = 40H OUT 40H, AX

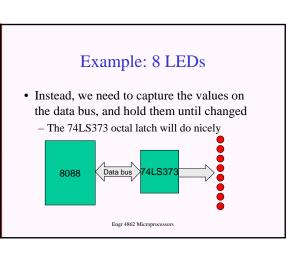
→ Port 40 ← 76H (AL), Port 41 ← 98H(AH)

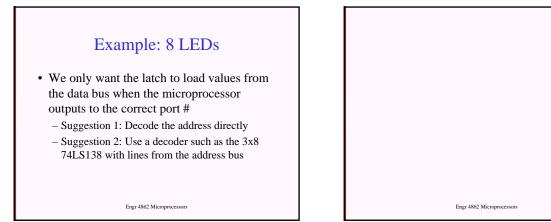
• For 8086, takes one bus cycle to complete the transfer, for 8088, two bus cycles are required

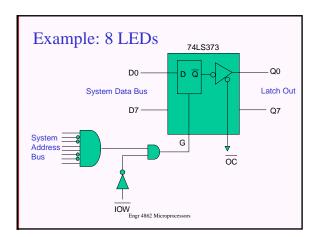
Engr 4862 Microprocessors

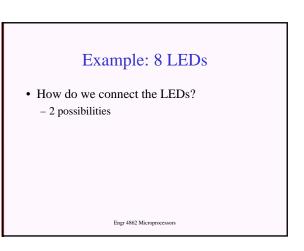
I/O Design

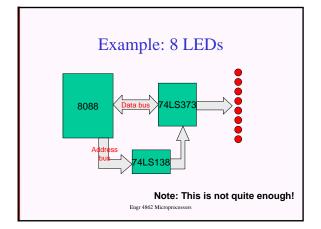
- When designing an I/O port, ensure that the port is only active when selected by the microprocessor
 - Use latches (output) and buffers (input) to isolate the I/O port circuitry from the address and data bus
 - Use the correct combinatorial logic circuitry and/or decoders with address bus to select the port

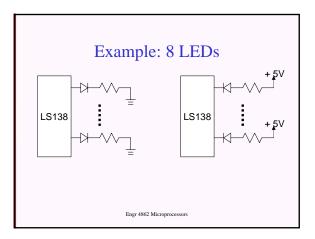

Engr 4862 Microprocessors

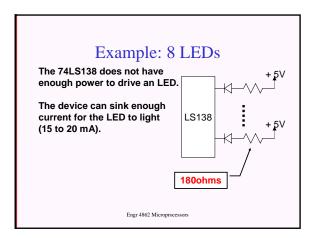

Output Design Example: 8 LEDs

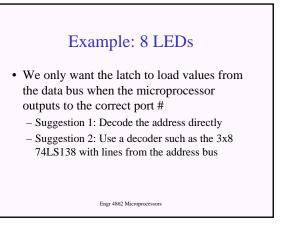

- This is a byte-wide output port
- The LEDs cannot be connected directly to data bus
 - Difficult to select the LEDs
 - LEDs would only display value for *very* short period of time (about 400ns, or 2 clock cycles)
 Only when data bus carries the correct signal
 - Microprocessor cannot sink enough current

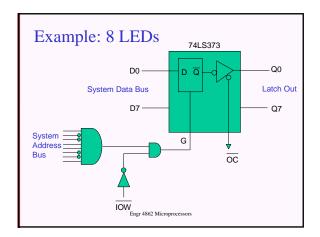

Engr 4862 Microprocessors

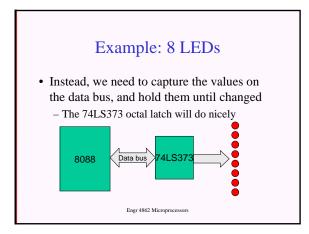

Input / Output Instructions • For 8-bit port IN AL, Port # OUT Port #, AL MOV DX, Port # MOV DX, Port # IN AL, DX OUT DX, AL • For 16-bit port IN AX, Port # OUT Port #, AX MOV DX. Port # MOV DX. Port # IN <mark>AX</mark>, DX OUT DX, AX Engr 4862 Microprocessors

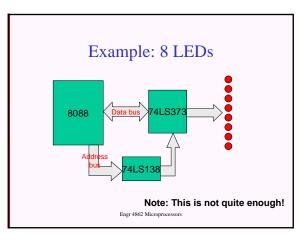


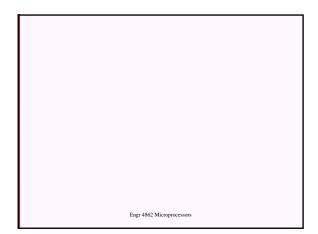


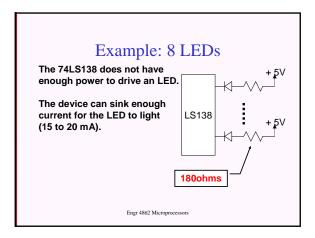


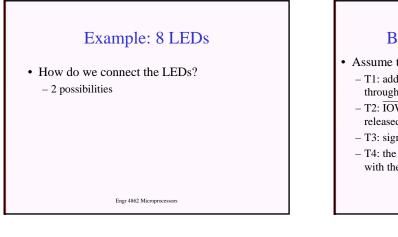


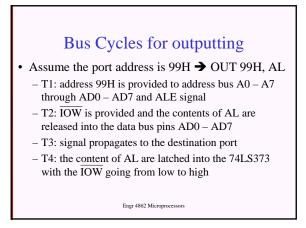

Bus Cycles for outputting

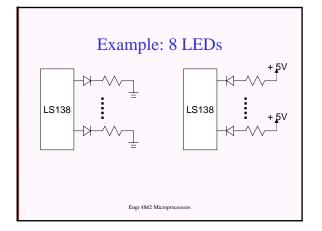

• Assume the port address is 99H \rightarrow OUT 99H, AL

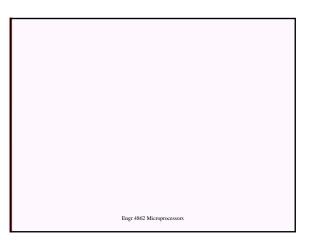

- T1: address 99H is provided to address bus A0 A7 through AD0 – AD7 and ALE signal
- T2: IOW is provided and the contents of AL are released into the data bus pins AD0 AD7
- T3: signal propagates to the destination port
- T4: the content of AL are latched into the 74LS373 with the \overline{IOW} going from low to high

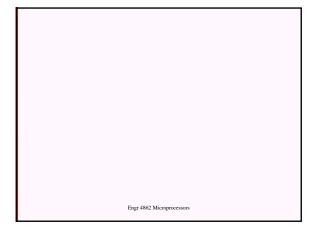

Engr 4862 Microprocessors







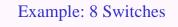




- Now we will look at an 8-bit input port.
- The procedure to select the port is similar to the output case

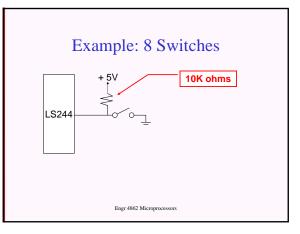
Engr 4862 Microprocessors

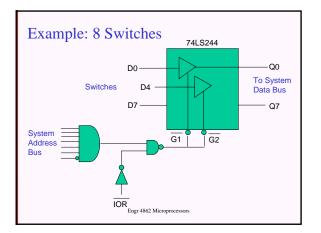
- Use IORD* instead of IOWR*



Example: 8 Switches

- We cannot use a latch to separate the switches from the microprocessor
 We only want the switch values to be on the
 - data bus when the microprocessor asks for it - A latch would constantly drive the bus!


Engr 4862 Microprocessors


Example: 8 Switches
How do we set up the switches?
When open, one logic level
When closed, the other logic level

- The device of interest here is the 74LS244 tristate buffer (unidirectional)
 - NOT the same as the 74LS245 transceiver (bidirectional)
- Tristate:
 - One of three states: on (1), off (0), or open (Z)
 - In the open state, the buffer does not drive the data bus

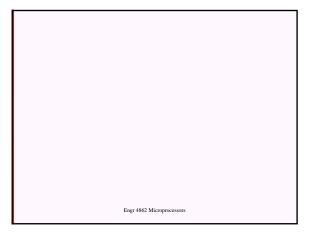
Engr 4862 Microprocessors

Programmable I/O

- The previous examples are good for many applications, but sometimes a more powerful and flexible solution is needed.
- The 8255 Programmable Peripheral Interface (PPI) is a 40-pin DIP IC that provides 3 programmable I/O ports, A, B, and C.
- One can program the individual port to be input or output port, economical and flexible than 74LS373, 73LS244, which must be hard wired)

Engr 4862 Microprocessors

Summary


- Since the data provided by the CPU to the port is on the system data bus for a limited amount of time (50-1000ns), it must be latched before it is lost
- In order to prevent any unwanted data from coming into the system data bus, all input devices must isolated through the tri-state buffer
 - The 74LS244 not only plays this role, but also provides the incoming signals sufficient strength (boosting) to travel all the ways to the CPU.
- As general, every device (memory, peripherals) connected to the global data bus must have a latch ot tristate buffer

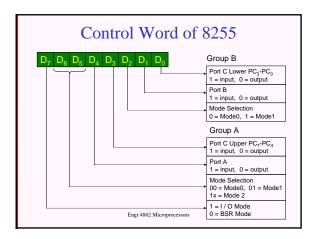
Engr 4862 Microprocessors

Programmable I/O

- How are is it programmable?
 - Configure each port as input or output
 - Different modes of operation
- You must initialize the PPI via software commands
 - Send a control byte to the device's control register port

Engr 4862 Microprocessors

Pin Description

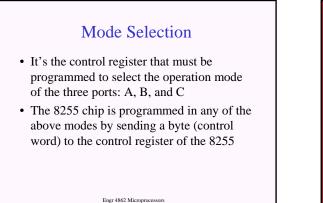

- PA0 PA7: Port A / All / input/output/bidirectional
- $\bullet \ PB0-PB7: Port \ B \ / \ All \ / \ \ input/output$
- PC0 PC7: Port C / All / input/output Can be split into two parts: Upper (PC7 – PC4) and Lower (PC3 – PC0).
 - Each can be used for input or output. Any of PC0 – PC7 can be programmed.
- RD and WR: control signal input to 8255
 IOR and IOW in peripheral I/O
 MEMR and MEMW in memory-mapped I/O
 Engr 482 Microprocessors

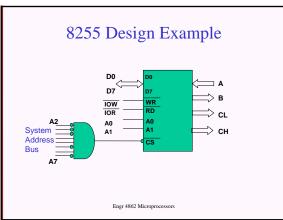
Pin Descr	ript	ion	l	
• RESET: Active high input sig			255	
 Used to clear the internal contr 	0			
 When activated, all ports are in 	nitializ	zed as	s inpu	t ports.
 Usually connect to the RESET ground 	outpu	ut of t	the sy	stem bus or
• A0, A1, and \overline{CS}				
- CS selects the entire chip, A0 a	and A	1 sele	ect the	e specified port
 CS selects the entire chip, A0 a Used to access port A, B, C, 		1 sele <u>A1</u>		specified port Select
1 /				
- Used to access port A, B, C,	CS	A1	A0	Select
- Used to access port A, B, C,	<u>CS</u> 0	A1 0	A0 0	Select Port A
- Used to access port A, B, C,	0 0	A1 0 0	A0 0 1	Select Port A Port B
- Used to access port A, B, C,	<u>CS</u> 0 0 0	A1 0 0	A0 0 1	Select Port A Port B Port C

Mode Selection

- Mode 0: simple I/O
- Any ports: A, B, CL, CU. No control of individual bits
- Mode 1: I/O (ports A and B) with handshaking (port C) - Synchronizes communication between an intelligent device (printer)
- · Mode 2: Bi-directional I/O with handshaking
 - Port A: bidirectional I/O with handshaking through port C
 - Port B: Simple I/O or in handshake mode 1
- BSR Mode: Bit set/reset
 - Only the individual bits on Port C can be programmed

Engr 4862 Microprocessors


Engr 4862 Microprocessors


8255 Design Example

• Mode 0

- Any of ports A, B, C can be programmed as input or output
- Port can not be both an input and output port at the same time
- Port C can be programmed with CL, CH separately
- Example:

Engr 4862 Microprocessors

