8253 / 8254 Timer

• A.k.a. PIT (programmable Interval Timer), used to bring down the frequency to the desired level
• Three counters inside 8253/8254. Each works independently and is programmed separately to divide the input frequency by a number from 1 to 65536
• There are 4 port address needed for a single 8253/8254, given by A0, A1, and CS

<table>
<thead>
<tr>
<th>CN</th>
<th>A1</th>
<th>A0</th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Counter 0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Counter 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Counter 2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Control Reg.</td>
</tr>
</tbody>
</table>

Block diagram:

- 8253
- Counter
- Control
- Block
8253 / 8254 Timer

- Each of the three counter has 3 pins associated
 - CLK: input clock frequency
 - A square wave of 33% duty cycle
 - 8253: 0 ~ 2 MHz, 8254: 0 ~ 8 MHz
 - OUT: can be square wave, or one shot
 - GATE: Enable (high) or disable (low) the counter
- Data Pins: (D0 ~ D7)
 - Allow the CPU to access various registers inside the 8253/54 for both read and write operations. RD and WR are connected to IOR and IOW of control bus.

8253 / 8254 Timer

- Each of the three counters must be programmed separately
- Control byte must be first written into the control register. The 8253/54 must be initialized before use
- The programmer can not only write the value of the divisor into the 8253/54, but read the content of the counter at any given time as well
- All counters are down counters.
8253 / 8254 Timer

• To program a given counter to divide the CLK input frequency, one must send the divisor to that specific counter’s register.
• Although all three counters share the same control register, the divisor registers are separate for each counter.
• Example: given the port addresses for 8253/54:
 Counter 0: 94H Counter 1: 95H
 Counter 2: 96H Control Reg: 97H

8253 / 8254 Timer

• Task 1: program counter 0 for binary counter for mode 3 to divide CLK0 by number 4282 (BCD)
 MOV AL, 0011 0111B
 OUT 97H, AL
 MOV AX, 4282H (BCD needs H)
 OUT 94H, AL (Low Byte)
 MOV AL, AH
 OUT 94H, AL (High Byte)
• OUT0 = CLK0 / 4282

Shape of the 8253/54 Output

• Given CLK = 1.193 MHz, the clock period of input frequency is 838 ns
• If the number N loaded into the counter is even, both high and low pulse are the same length, which is N/2 * 838 ns
• If the number N loaded into the counter is odd, the high pulse is (N+1)/2 * 838 ns and the low pulse is (N–1)/2 * 838 ns
• If N is odd, the high portion of the output square wave is slightly wider than the low portion
8253/54 Operation Modes

• Mode 0: Interrupt on terminal count
 – The output is initially low, and remain low for the duration of the count if GATE=1. When the terminal count is reached, the output will go high and remain high until a new control word or new count number is loaded
 • Width of low pulse = N * T, where T is clock period
 • Example: GATE=1 and CLK = 1 MHz
 Clock count N = 1000

• Mode 0: Interrupt on terminal count
 – If GATE becomes low at the middle of the count, the count will stop and the output will be low. The count resumes when the GATE becomes high again. This in effect adds to the total time the output is low.

• Mode 1: HW triggered / programmable one shot
 – The triggering must be done through the GATE input by sending a 0-to-1 pulse to it.
 – Steps: 1) Load the count register
 2) A 0-to-1 pulse must be sent to the GATE input to trigger the count

• Mode 1: HW triggered / programmable one shot
 – In Mode 1, after sending the 0-to-1 pulse to GATE, OUT becomes low and stays low for a duration of N*T, then becomes high and stays high until the GATE is triggered again.
 – If during the activation, a retriggered happened, then restart the down counting

• Mode 2: Rate Generator (Divide-by-N counter)
 – In Mode2, if GATE=1, OUT will be high for N*T, goes low only for one clock pulse, then counter is reloaded automatically, and the process continues indefinitely. Whole period: (N+1) * T

Engr 4862 Microprocessors
8253/54 Operation Modes

• Mode 3: Square wave rate generator
 – Most commonly used

• Mode 4: Software triggered strobe
 – Similar to Mode2, except that the counter is not reloaded automatically
 – In Mode4, if GATE=1, the output will go high when loading the count, it will stay high for duration N*T. After the count reaches zero, it becomes low for one clock pulse, then goes high again and stays high until a new command word or new count is loaded
 – To repeat the strobe, the count must be reloaded

8253/54 Operation Modes

• Mode 5: Hardware triggered strobe
 – Similar to Mode4, except that the triggering must be done with the GATE input
 – The count starts only when a 0-to-1 pulse is sent to the GATE input
 – If GATE retriggered during the counting, it will restart the down counting

8253 / 8254 Timer

Example 6.7
Assume that GATE = 1 and CLK1 = 1 MHz, and the clock count N = 1000. Show the output of OUT1 if it is programmed in mode 0.

Solution:
The clock period of CLK1 is 1 μs, therefore, OUT1 is low for the 1000 × 1 μs = 1 μs, before it goes high as shown in the following diagram.
Example 5-8

In Example 5-7, assume that GATE1 becomes zero for 400 µs. What is the width of the low pulse for OUT1?

Solution:

It is 1000 µs - 400 µs = 600 µs, as shown next.

GATE1 = 1

OUT1

- 1600 µs

Mode 1: programmable one-shot

Engr 4862 Microprocessors

Example 6-6

(a) Notice that OUT1 becomes low only when GATE1 goes from H to L.

(b) Assume that after 10 clock pulses GATE1 is re-enabled. Show the output for OUT1.

Solution:

Notice that the output is re-enabled automatically and the counter continues to produce OUT2.

GATE2 = 1

Mode 3: exposure time rate generator

Engr 4862 Microprocessors
8253 / 8254 Timer

Example 5.11

If CLK = 2 MHz, GATE = 1, N = 1000, show OUT1 if COUNT1 is programmed for mode 3.

Solution:

Since the clock period is 1 μs, OUT1 is high for 509 μs and low for 491 μs, producing the square wave of 1 μs period continuously, as shown next.

GATE1 = 1

Mode 3: software triggered stimulus

8253 / 8254 Timer

Example 5.12

If CLK = 1 MHz, GATE = 0, and N = 600, show the shape of OUT0 if GATE0 is programmed for mode 5.

Solution:

Since the clock period is 1 μs, after the count is loaded OUT0 will be high for 640 μs and will go low for 1 μs. Then it will go high again and stay high until the counter is reprogrammed, as shown below.

GATE0 = 0

Mode 5: hardware triggered stimulus

8253 / 8254 Timer

Example 5.13

If CLK = 1 MHz, and N = 400, show the output for OUT1 if GATE1 is programmed for mode 5.

Solution:

Notice that the counter starts only when the 8-bit pulse is applied to GATE1.

GATE1 = 1

Mode 5: hardware triggered stimulus
Memory and Memory Interfacing

• Memory Fundamentals
 – In all computer designs, semiconductor memories are used as primary storage for code and data
 – Requirement of primary memory ➔ Fast in responding to CPU
 – Types: RAM and ROM
 – Memory capacity
 • The capacity of a memory IC chip is always given in bits
 – Chip capacity: the number of bits that a chip can store: Kbits, Mbits
 • The capacity of a computer is given in bytes
 • Example: A 4M chip — 4M bits, A 4M computer — 4M bytes
Memory and Memory Interfacing

- Memory organization
 - Memory chips are organized into a number of locations within the IC
 - The number of bits that each location can hold is always equal to the number of data pins on the chip
 - That depends on the number of address pins
 - Given x the number of address pins, 2^x locations
 - The total number of bits that a memory chip can store is equal to the number of locations times the number of data bits per location

- Speed
 - The speed of a memory chip is commonly referred to as its access time, varied from a few ns to hundreds of us.

- Characteristics
 - Capacity, Organization, Speed
 - Examples
 - 256 K memory chip with 8 data pins
 - Organization: $32K \times 8 / \text{Address: 15 pins}$
 - A memory chip has 13 address lines and 4 data lines
 - Organization: $2^{13} \times 4 = 8K \times 4 = 32K\text{bits}$

- Summary
 - Each memory chip contains 2^x locations, x is the number of address pins on the chip
 - Each location contains y bits, y is the number of data pins
 - The entire chip will contain $2^x \times y$ bits
 - Memory Types
 - ROM (non-volatile)
 - PROM (Programmable ROM), OTP, need burner or programmer
 - EPROM (Erasable Programmable ROM), UV-radiation to erase
 - EEPROM (Electrically erasable programmable ROM)
 - Advantage: 1. Much quicker, 2. One can select byte to be erased, 3. One can program/erase while still on board
Memory Types

- ROM (non-volatile)
 - Flash Memory EPROM
 - Since 1990s
 - Advantage: the process of erasure of the entire content takes less than a second, erasure method is electrical
 - Widely used as a way to upgrade the BIOS ROM of the PC
 - Mask ROM
 - The kind of ROM whose contents are programmed by the IC manufacturer
 - Low cost
- RAM (volatile)
 - SRAM (Static RAM)
 - Storage cells in SRAM are made of flip-flops and therefore do not require refreshing in order to keep their data
 - The problem is that each cell requires at least 6 transistors to build and the cell holds only one bit data
 - The capacity of SRAM is far below DRAM
 - SRAM is widely used for cache memory
 - DRAM (Dynamic RAM)
 - The use of a capacitor as a means to store data
 - Cuts down the number of transistors needed to build cell
 - However, it requires constant refreshing due to leakage

Memory and Memory Interfacing

- Memory Types
 - ROM (non-volatile)
 - Flash Memory EPROM
 - Since 1990s
 - Advantage: the process of erasure of the entire content takes less than a second, erasure method is electrical
 - Widely used as a way to upgrade the BIOS ROM of the PC
 - Mask ROM
 - The kind of ROM whose contents are programmed by the IC manufacturer
 - Low cost
 - RAM (volatile)
 - SRAM (Static RAM)
 - Storage cells in SRAM are made of flip-flops and therefore do not require refreshing in order to keep their data
 - The problem is that each cell requires at least 6 transistors to build and the cell holds only one bit data
 - The capacity of SRAM is far below DRAM
 - SRAM is widely used for cache memory
 - DRAM (Dynamic RAM)
 - The use of a capacitor as a means to store data
 - Cuts down the number of transistors needed to build cell
 - However, it requires constant refreshing due to leakage

Memory and Memory Interfacing

- Memory Types
 - ROM (non-volatile)
 - Flash Memory EPROM
 - Since 1990s
 - Advantage: the process of erasure of the entire content takes less than a second, erasure method is electrical
 - Widely used as a way to upgrade the BIOS ROM of the PC
 - Mask ROM
 - The kind of ROM whose contents are programmed by the IC manufacturer
 - Low cost
 - RAM (volatile)
 - SRAM (Static RAM)
 - Storage cells in SRAM are made of flip-flops and therefore do not require refreshing in order to keep their data
 - The problem is that each cell requires at least 6 transistors to build and the cell holds only one bit data
 - The capacity of SRAM is far below DRAM
 - SRAM is widely used for cache memory
 - DRAM (Dynamic RAM)
 - The use of a capacitor as a means to store data
 - Cuts down the number of transistors needed to build cell
 - However, it requires constant refreshing due to leakage

Memory and Memory Interfacing

- Memory Types
 - ROM (non-volatile)
 - Flash Memory EPROM
 - Since 1990s
 - Advantage: the process of erasure of the entire content takes less than a second, erasure method is electrical
 - Widely used as a way to upgrade the BIOS ROM of the PC
 - Mask ROM
 - The kind of ROM whose contents are programmed by the IC manufacturer
 - Low cost
 - RAM (volatile)
 - SRAM (Static RAM)
 - Storage cells in SRAM are made of flip-flops and therefore do not require refreshing in order to keep their data
 - The problem is that each cell requires at least 6 transistors to build and the cell holds only one bit data
 - The capacity of SRAM is far below DRAM
 - SRAM is widely used for cache memory
 - DRAM (Dynamic RAM)
 - The use of a capacitor as a means to store data
 - Cuts down the number of transistors needed to build cell
 - However, it requires constant refreshing due to leakage
Memory and Memory Interfacing

- Packaging in DRAM
 - To reduce the number of pins needed for address, multiplex / demultiplexing is used
 - Method is to split the address into half and send in each half of the address through the same pins requires fewer pins
 - Internally, DRAM is divided into a square of rows and columns, the first half of the address is called the row and the second half is called the column

- Organization of DRAM
 - Most DRAM are x 1 and x 4
 - NV-RAM (Non-volatile RAM)

Memory Chip

- Ex1: Find the organization and chip capacity for ROM
 - 14 Address pins, 8 data pins
 - 12 Address pins, 8 data pins

- Ex2: Find the organization and chip capacity for RAM
 - 17 address pins, 8 data pins, SRAM
 - 9 address pins, 4 data pins, DRAM

- Ex3: Find the capacity and # of address/data pins for the following memory chip
 - 256K × 4 SRAM
 - 32K × 8 EPROM
 - 1M × 1 DRAM

Instruction and Machine Code

- Typical 8086/8088 Machine Instruction Format
Encoding (Instruction → Machine Code)

• **E.g1.** MOV CL, [BX + 39A2H]
 – Book P. 3-121
 (1) Memory/Register Operand to/from Register Operand
 (2) \[\text{xxxx yy dd w mod reg r/m}\]
 \[d = 1: \text{SRC} = \text{EA}, \text{DEST} = \text{REG}\]
 \[d = 0: \text{SRC} = \text{REG}, \text{DEST} = \text{EA} \Rightarrow d = 1\]
 (3) Byte operation: \[w = 0\]
 – Book P. 6-55, Table 6-20
 (4) MOD = 10: memory mode, 16-bit disp follows

Therefore, the final code is
\[8A 8F A2 39\]

• **E.g1 (cont’d) MOV CL, [BX + 39A2H]**
 (5) Format: \[__ __ A2 39\]
 (6) \[w = 1, \text{CL} \Rightarrow \text{REG} = 001\]
 (7) MOD = 10, (BX + Disp) \[\Rightarrow \text{R/M} = 111\]

Therefore, the final code is
\[10001010 10001111 A2 39 \Rightarrow 8A 8F A2 39\]

Encoding (Instruction → Machine Code)

• **E.g2.** ADD WORD PTR ES: [BX + SI + 1053H], AX
 (1) Override operation: we need to put a override prefix before the machine code
 – Book P. 6-61
 (2) \[0 0 1 \text{reg} 1 1 0\] SEGMENT = override prefix
 – Book P. 6-56
 (3) ES: 00 CS: 01 SS: 10 DS: 11
 – Book P. 6-61
 (4) Therefore the prefix is: \[0 0 1 0 0 1 1 0\] (26H)

Therefore, the final code is
\[10001010 10001111 A2 39 \Rightarrow 8A 8F A2 39\]
Encoding (Instruction → Machine Code)

- **E.g2. ADD WORD PTR ES: [BX + SI + 1053H], AX**
 - Book P. 3-64
 (5) Memory/register Operand with Register Operand
 - 0 0 0 0 0 0 d w mod reg r/m
 - d = 1: LSRC=REG, RSRC=EA, DEST=REG
 - d = 0: LSRC=EA, RSRC=REG, DEST=EA ➔ d = 0
 (6) Word operation ➔ w = 1
 - Book P. 6-55, Table 6-18
 (7) 16-bit Disp ➔ mod = 10
 (8) Reg: AX ➔ Reg = 000, R/M = 000
 Therefore, 00100110 00000001 10000000 53 10

Decoding (Machine Code → Instruction)

- **E.g3. 88 95 00 02**
 - Book P. 6-61, Table 6-23
 (1) 88 ➔ MOV Reg8 / Mem8, Reg8
 - 10001000 Mod Reg R/M
 - d = 0: SRC = Reg, DEST = EA (P. 3-121)
 - w = 0: byte operation
 - Displacement: 0200 H
 ➔ Mod Reg R/M = 1 0 0 0 1 0 1
 - Book P. 6-55
 (2) Reg: 010 ➔ DL, R/M: 101 ➔ (DI) + D16
 ➔ Therefore, MOV BYTE PTR [DI + 0200H], DL

Decoding (Machine Code → Instruction)

- **E.g4. 36 81 8C 8E 00 F4 00**
 - Book P. 6-61, Table 6-23
 (1) 36 ➔ Segment override prefix: SS
 (2) 81 ➔ many choices: ADD, OR, ADC, SBB,
 - xxx Reg16/Mem16, Immed16
 (3) 8C ➔ help to explain:
 - Mod Reg R/M: 1 0 0 0 1 0 0 0
 ➔ Reg: 001 ➔ OR Reg16/Mem16, Immed16
 - 10000001 mod 001 r/m
 ➔ P. 6-55: mod: 10, r/m: 110 ➔ (BP) + D16
 ➔ Therefore, OR WORD PTR [BP + 008EH], 00F4H
Decoding (Machine Code → Instruction)

- Practice Question:
 C7 C7 A9 12 3B 47 F4
 MOV DL, 12A9H
 CMP AX, [BX - 12]

 B8 00 02 8E D8 B9 08 00 E2 FE
 MOV AX, 0200H
 MOV DS, AX
 MOV CX, 0008
 here: LOOP here

ALE Timing in 8088 Based System

Memory Read Bus Timing in 8088