

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 1

§ 2 Basic Features of VHDL

§ 2.1 VHDL Background Information

1. What is a HDL?
 A high level programming language that offers special constructs with which you can
model microelectronic circuits.
 The special constructs allow you to:

a. Describe the operation of a circuit at various levels of
i. The behavior abstraction of a circuit

ii. The function abstraction of a circuit
iii. The structure abstraction of a circuit

b. Timing of a circuit
c. Concurrency of circuit operation

2. Why HDL?
a. HDL facilitates a top-down design methodology using synthesis

i. Design at high implementation-independent level
ii. Delay decision on implementation details

iii. Easily explore design alternatives
iv. Solve architecture problems before implementation
v. Automatic mapping of a high-level description to a technology specific

implementation
b. Provide greater flexibility

i. Design reuse
ii. Move design between multiple vendors’ tools

c. Permits you to take advantage of mature software design practice
i. Quickly capture design intent

ii. Quickly manage design data
 Or in other words, documenting a design and modeling it.

d. Prototyping of complicated system is extremely expensive
 Replace the prototyping process with validation through simulation
 HDLs can be used for both logic synthesis and test generation

3. HDLs
 Early HDLs (CDL, ISP, AHPL), mainly in 70’s, primarily target at design architecture
verification

 Can’t model designs with high accuracy
 Can’t provide precise timing
 Language construct imply a certain hardware structure

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 2

 Newer HDLs (VHDL, Verilog) have universal timing model and imply no particular
hardware structure.
4. VHDL history

a. Begin in 1983 US DOD sponsored the development of VHSIC (very high speed
integrated circuit) HDL (VHDL) program (Intermetrics, IBM, TI)

 Original intent: a means of communicating designs among contractors in the
VHSIC program

b. First major stage of language development in August 1985 on the release of version
7.2

c. IEEE sponsored further development
 Goal: The development of an improved standard version of the language

 In May, 1987, LRM (Language Reference Manual) released for industrial
review

 In December 1987, the version of VHDL became IEEE 1076-1987 standard
and official

 From 1988 to 1992, minor changes incorporated, and balloted in 1993
 In 1994, revised standard (VHDL 1076-1993)

§ 2.2 VHDL Basic

1. How to detect errors?
 Simulate and test on different levels

2. The two HDL languages can do:
 Behavioral level design (very high level)

 Dataflow level design (RTL level)

 Structural level design (Gate level)

3. Two programs need to write in order to simulate and test
 What you want?

 The VHDL code for components
 How you test / verify?

 VHDL code for testing, i.e., testbench
4. If okay, completes logic design
 Technology library in this course for synthesis: 0.18 CMOS technology

§ 2.3 Major Language Constructs

1. Design example: A circuit that counts the number of 1’s in an input vector of three bits.

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 3

2. Design Entities
 In VHDL, a given logic circuit is a design entity
 Design entity consists of two different types of descriptions:
 Interface description + Architecture bodies
 (Only one) (One or more)
3. Interface description
 Declares the entity and describes its inputs and outputs.

Also, this is a place where documentation information about the nature of the entity can
be recorded.
-- starts comments, for any line

4. Architecture bodies
Specifies either the behavior of the entity or a structural decomposition of the entity
using more primitive components
Step 1: At the beginning of the design process
 Algorithm in mind that would like to implement
 Check its accuracy of the algorithm

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 4

 Implementation detail not specified
 Behavioral body
 i. Describe the operation of the algorithm perfectly.
 ii. Correspondence to real hardware is weak.

5. Advance to logic design stage

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 5

6. Structured design
 Level 1 partitioning:
 Majority function (MAJ)
 Odd-parity function (OPAR)
 Level 2 partitioning:
 Basic gates, e.g., AND2, OR2, AND3, OR4, INV

 Proceed with the design and implementation of MAJ

1. Construct building blocks

2. construct MAJ

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 6

3. construct OPAR (omitted)

4. construct Top Level Entity

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 7

§ 2.4 Model testing and testbench

1. VHDL model must be tested.
 Done by forming a top-level entity
 Naming convention:
2. The entity declaration for testbench contains NO PORT statement because the test signals

are generated internally to the testbench.
3. Within the testbench architecture, the test input(s) and test output(s) for the entity are

declared as signals.
4. Next, components declaration and binding to that in the design library.
5. After BEGIN, component is instantiated and mapped to PORT signals.
6. Finally, one or several processes contain a sequence of test vectors to drive the ENTITY.
 Each process runs just once at the beginning of simulation and then suspended (wait).

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 8

§ 2.5 Other VHDL program modules

1. Block statements
(i) A block is a bounded region of text that contains a declaration section and an

executable section.
 Architecture body itself is a block
 Within an architecture body or block body, internal blocks can exist.

 A: BLOCK
 … … -- Block A declaration section
 … …
 BEGIN
 … … -- Block A executable section
 … …
 END BLOCK A;

 B: BLOCK
 … … -- Block B declaration section
 … …
 BEGIN
 … … -- Block B executable section
 … …
 END BLOCK B;

(ii) Why block?
a) It supports a natural form of design decomposition;
b) A “guarded” condition can be associated with a block when a guard condition

is true. It enables certain types of statements inside the block

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 9

 e.g., D0: BLOCK (clk = ‘1’ AND NOT clk’STABLE)
 q <= GUARDED d;
 END BLOCK D0;

c) A guarded statement will be executed when
(1) The guard is TRUE and a signal on the RHS of the guarded statement

changes
(2) The guard changes from FALSE to TRUE

d) Very useful for modeling register primitives.

2. Processes
(i) Begin with keyword PROCESS (A).
(ii) A is called sensitivity list of the process.
(iii) When a signal in the sensitivity list changes, the process is activated and statements

within the process block are executed.
(iv) Questions? How about PROCESS ()?

 Label: PROCESS (Sensitivity List)
 -- Constant declaration
 -- Variable declaration
 -- Subprogram declaration
 -- Signals are NOT permitted!
 BEGIN
 --
 -- sequential statements
 --
 END PROCESS Label;

(v) Every process statement is executed once at the beginning of the simulation.

Thereafter, only when a signal in the sensitivity list changes value (when there is an
event on one or more signals), will the process be executed again.

(vi) Variables within processes are static
 Initialized only once at the beginning of the simulation
 Retain their values between process activations.

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 10

3. Data Types (Details self-study)
(i) Scalar (Consist of a single element)

a) Enumeration (discrete): A type whose values are defined by simply listing
them in an ordered list.

 Pre-defined enumeration data type in language:
 e.g.: TYPE BIT IS (‘0’, ‘1’);
 TYPE BOOLEAN IS (FALSE, TRUE);
 TYPE TRISTATE IS (‘Z’, ‘0’, ‘1’);

 User-defined enumeration data type:
 e.g.: TYPE state IS (s0, s1, s2, s3);

Type STD_ULOGIC: nine value type defined by IEEE standard 1164,
which is important for synthesis

STD_LOGIC is a subtype of STD_ULOGIC, with an associated
resolution function, is the type actually used for signal and variable
declaration.

 TYPE STD_ULOGIC IS (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’);

If the same identifier or character literal is declared for more than one
enumeration type, it is said to be overloaded.

b) Integer: discrete, numeric
c) Physical: numeric
d) Floating point (or real): numeric

(ii) Composite
a) Array – All elements have the same type, homogeneous

 TYPE Reg_32 IS Array (31 DOWNTO 0) OF BIT;
 SUBTYPE my_byte IS BIT_VECTOR (7 DOWNTO 0);

 Arrays can have tick attributes to describe:
 e.g., SIGNAL dbus: BIT_VECTOR (15 DOWNTO 0);

 dbus’RIGHT = 0;
 dbus’LEFT = 15;
 dbus’LENGTH = 16

b) Record – Elements may have different types.
(iii) Access

 Type that provides access to other types
(iv) File

 Provide access to data files.

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 11

4. Language Statement
There are two classes of language statements: sequential statements and concurrent
statements.

Sequential Statements include processes and subprograms. It is like high-level software
languages such as C/C++. It is mainly used to describe algorithms.

Current statements are included in the architecture bodies. It is mainly used to model
signals. All concurrent statements are executed once at the beginning of the simulation.
The order in which the concurrent statement appear in the architecture body is not
important. It is executed only when the RHS signals generate events.

(i) Assignment statement

a) Variable assignment (:=) Variable resumes its new value instantaneously.
b) Signal assignment (<=) will schedule a new value for a signal to assume at

some future time. The current value of signal is never changed by a signal
assignment statement.
If no specific time value is specified, the default is an infinite small value (δ,
delta delay).
 For example:

c) The base type of the value assigned to a signal must be the same as the base

type declared for the signal.
d) Transaction representation:

They are represented as a value-time pair in parenthesis, i.e., (value, time).
 For example:

(ii) Signal Drivers

If a process contains one or more signal assignment statement for a signal, the
VHDL simulator creates a single value holder called a signal driver (for a signal).

Signal driver maintains an ordered list of scheduled value assignments for the
signal.

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 12

Each scheduled signal assignment is called a Transaction. New value assigned to
a signal by a transaction may/may not be different from the current value.

If signal undergoes a change in value due to a transaction, an Event occurs.

If more than one process contains signal assignment statement for the same signal,
simulator creates a separate driver for the signal for each such process.

 At any given time, there may be more than one driver (each associated
with a different process) scheduling values for the signal.
 The problem is solved by specifying a resolution function.
 e.g., SIGNAL a: wired_or BIT;

5. Characterizing Hardware Language
(i) Timing and concurrency are main characteristics of HDLs.
(ii) Why need timing?

 Because value transfer is done through wired or busses.
 Signals in VHDL represent real wire, there is delay associated with value

transfer through wires
 Hence, we need timing.

(iii) How delay comes?
 Wire has capacitance sometimes proportional to the length

 Wire capacitance + pull-up / pull-down resistance propagation delays
through wires

 Delay depends on technology, material, and size.
(iv) Software sequential manner

Hardware interconnection of components concurrently active VHDL
simulator makes user think the execution is done concurrently.

6. Delay Modeling

(i) The way delays are handled in signal assignments.
(ii) Signal assignments can have inertial or transport delays.
(iii) The inertial delay can have an additional reject specification.
(iv) Default delay mechanism for signal assignment is inertial.
 Transport delay must be explicitly specified.
(v) Inertial delay can be used to model capacitive networks.

 For example:

Delays through the capacitive networks and through gates with threshold values can be
more accurately modeled with an inertial delay and a pulse rejection value that is less
than the value of the inertial delay.

 Target1 <= REJECT 3 NS INERTIAL waveform AFTER 5 NS;
 Pulse of 3 NS will be rejected!

 Target2 <= waveform AFTER 5 NS;

If a pulse whose width is less than 5 NS occurs on the waveform, it will
be rejected and does not appear on target2

Pulse of exactly 5 NS will not be rejected.
(vi) Transport delay

It is used to model delay through transmission lines and networks with virtually
infinite frequency response.

 Target3 <= TRANSPORT waveform AFTER 5 NS;

waveform <= ‘1’ AFTER 3 NS, ‘0’ AFTER 8 NS, ‘1’ AFTER 14 NS,
 ‘0’ AFTER 18 NS, ‘1’ AFTER 24 NS, ‘0’ AFTER 27 NS,
 ‘1’ AFTER 33 NS, ‘0’ AFTER 35 NS, ‘1’ AFTER 41 NS,
 ‘0’ AFTER 47 NS;

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 13

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 14

(vii) Example:
 ARCHITECTURE test OF example IS
 SINGAL a, b, c: BIT := ‘0’;
 BEGIN
 a <= ‘1’ AFTER 15 NS;
 b <= NOT a AFTER 5 NS;
 c <= a AFTER 10 NS;
 END test;

7. Delta Delay (δ)
Used internally in HDL simulators to model hardware concurrency.
 ARCHITCTURE test OF concurrent IS
 SIGNAL a, b, c : BIT := ‘0’;
 BEGIN

 a <= ‘1’;
 b <= NOT a;
 c <= NOT b;
 END test;

8. Sequential placement of transactions
(i) Signal assignment can be placed in the sequential body

 The order in which signal assignments appear is important
 It is legal to make multiple assignments to unresolved signal
 New transaction may be placed while old transaction not expired
 Whether to overwrite or append depends

① Timing of new transaction
② Type of the assignment
③ Value of signal

(ii) Rules

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 15

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 16

(iii) Examples:
Example 1:
 ARCHITECTURE sequential OF example IS
 SIGNAL x : RIT := ‘Z’;
 BEGIN
 PROCESS ()
 BEGIN
 x <= ‘1’ AFTER 5 NS;
 x <= TRANSPORT ‘0’ AFTER 3 NS;
 WAIT;
 END PROCESS;
 END sequential;

Example 2:
 x <= ‘1’ AFTER 5 NS;
 x <= TRANSPORT ‘0’ AFTER 8 NS;
 WAIT;

Example 3:
 x <= ‘1’ AFTER 5 NS;
 x <= ‘0’ AFTER 3 NS;
 WAIT;

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 17

Example 4:
 x <= ‘0’ AFTER 5 NS;
 x <= ‘0’ AFTER 8 NS;
 WAIT;

Example 5:
 x <= ‘1’ AFTER 5 NS;
 x <= REJECT 2 NS INERTIAL ‘0’ AFTER 8 NS;
 WAIT;

Example 6:
 x <= ‘1’ AFTER 5 NS;
 x <= REJECT 4 NS INERTIAL ‘0’ AFTER 8 NS;
 WAIT;

Example 7:
 ARCHITECTURE current OF example IS
 SIGNAL a, b : BIT ;
 BEGIN
 a <= ‘0’, ‘1’ AFTER 5 NS, ‘0’ AFTER 10 NS, ‘1’ AFTER 15 NS;
 b <= ‘0’, a AFTER 3 NS;
 END current;

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 18

Example 8:
 ARCHITECTURE current OF example IS
 SIGNAL a, b, c : RIT := ‘0’;
 BEGIN
 a <= NOT a AFTER 10 NS WHEN NOW <= 25 NS ELSE a;
 b <= ‘1’, a AFTER 20 NS, ‘0’ AFTER 35 NS;
 c <= ‘Z’, a AFTER 5 NS, NOT b AFTER 10 NS;
 END current;

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 19

9. Sequential Control Statements

 Used in processes and subprograms to define algorithms
 Execute in order of appearance

(i) WAIT Statement
 Not supported in synthesis, useful in testbench
 E.g.:
 WAIT ON x, y UNTIL z = 0 FOR 100 NS;

Process resumes after 100 NS, or when an event occurs on x or y with z = 0,
whichever comes first.

 WAIT;
Wait forever, permanent suspend process

(ii) IF Statement
 Format:

IF condition1 THEN
 -- Sequence of statements under condition1
ELSIF condition2 THEN
 -- Sequence of statements under condition2
-- Any number of ELSIF clauses
ELSE
 -- Sequence of statements under all other conditions
END IF;

 Note: (1) Always has else statement;
 (2) Notice condition has priority
 (3) Can be nested.
 E.g., Positive edge triggered D-FF with asynchronous set/reset.

ENTITY d_ff IS
 PORT (d, set, rst, clk : IN BIT; q, qb : OUT BIT);
END d_ff;

ARCHITECTURE behavioral OF d_ff IS

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 20

END behavioral;

(iii) CASE Statement

 Format:
CASE expression IS
 WHEN choice 1 =>
 -- Sequence of statements under choice 1
 WHEN choice 2 =>
 -- Sequence of statements under choice 2
 … …
 WHEN OTHERS =>
 -- Last sequence of statements
END CASE;

 Note:
1. All possible choices for values must be included exactly once
2. The sets of choices must be mutually exclusive
3. Give equal weight to each choice
4. Useful in state machine
5. Can be nested with IF statement

 E.g.: Microwave oven controller

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 21

10. Subprograms
 Functions and procedures
 Function computes and return a value to invoking expression, does not modify any of its

arguments.
 Procedures are both sequential and concurrent statements.

 Don’t return a value to the invoking program.
 May / May not modify their arguments.

(i) Functions

 Things to specify
Name, input parameters, type of return value, and algorithm to compute the
returned value. Any declaration if needed.

 Format:
 FUNCTION name (Formal Parameters) RETURN type IS
 -- Parameters always as IN type
 -- constant, variable
 -- No Signal Allowed
 BEGIN
 -- sequential statements

 RETURN (value);
END name;

 E.g., the majority function in the 1’s counter

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 22

(ii) Procedures

 Can modify one or more input parameters
 Things to specify

Name, input and output parameters, algorithm, any algorithm if needed.

 Format:
 PROCEDURE name (Formal Parameters)
 -- Parameters can be IN, OUT, INOUT type
 -- constant, variable
 -- No Signal Allowed
 BEGIN
 -- sequential statements

END name;

 E.g., Procedure to add

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 23

 When invoking, actual parameters are associated with formal parameters using
wither positional association list or a named association list. Base type must be matched.

11. Advanced Features of VHDL

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 24

(i) Overloading
 The capability to change the meaning of literals and the names of operators,

functions and procedures by re-declarations.

 E.g., F <= A AND B; A, B : QIT (‘X’, ‘0’, ‘1’, ‘Z’)

AND operator is defined for BIT and Boolean, does not support QIT

 One way to do is write function for the operation and use A, B as arguments to the

function: F <= FUNC_AND (A, B);

 Not convenient, difficult to read, especially under complicated expressions

 Better way to do: overload AND (OR) operators

 FUNCTION “AND” (a, b : QIT) RETURN QIT IS

 TYPE qit_table IS ARRAY(QIT, QIT) OF QIT;

 CONSTANT qit_and_table : qit_table :=

 -- 0 1 X Z

 ((‘0’ ‘0’ ‘0’ ‘0’), -- 0

 (‘0’ ‘1’ ‘X’ ‘X’), -- 1

 (‘0’ ‘X’ ‘X’ ‘X’), -- X

 (‘0’ ‘X’ ‘X’ ‘X’)); -- Z

 BEGIN

 RETURN qit_and_table (a, b);

 END “AND”;

 F <= A AND B;

 Is the built-in AND operator still available for the use of BIT and Boolean?

 Yes, VHDL analyzer can infer which operator is required in an expression by the

parameter profiles and result profiles for the operations having the same name.

 Parameter profiles: the number, order, type of operand

 Result profiles: the type of returned result

 Subprogram name can also be overloaded.

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 25

12. Package
It’s tedious to repeat declarations each time.

→ VHDL provides package to hold frequently used declarations
→ Must be declared before it can be used.
→ IEEE has developed standard 1164 as a standard nine-value logic system, particularly

for logic synthesis
 STD_LOGIC_1164 Basic value system and associated functions
 NUMERIC_STD Overloaded arithmetic and other operators for synthesis

→ Vendors package (Synopsys)
 STD_LOGIC_ARITH
 STD_LOGIC_UNSIGNED
 STD_LOGIC_SIGNED

→ Declared own package
 LIBRARY ieee;
 USE ieee.std_logic_1164.all;
 PACKAGE my_package IS
 TYPE qit IS (‘X’, ‘0’, ‘1’, ‘Z’);
 SUBTYPE rit IS qit RANGE ‘0’ TO ‘Z’;
 TYPE qit_table IS ARRAY (qit, qit) OF qit;
 PROCEDURE int2qit (int: IN INTEGER; qin: OUT qit_vector);
 FUNCTION “AND” (a, b: qit) RETURN qit;
 END my_package;

 PACKAGE BODY my_package IS
 FUNCTION “AND” (a, b: qit) RETURN qit IS
 -- Statements for “AND” function
 END “AND”;

 -- Other procedures;
 END my_package;

→ When use your package
1. Compile the package file
2. In your component, specify “use lib_name.pkg_name.element_name;

For example: USE work.my_package.all;

13. Configuration
→ VHDL structural architectures are developed by instantiating components that are

declared in the declaration region of the architecture
→ Before a structural model can be simulated, each instance component must be bound to

a library model
→ One way to do: place configuration specification statements directly in the structural

model

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 26

 E.g.: FOR ALL: inv USE entity work.inv (dataflow);

→ Another approach
 Through the use of configuration declaration:

 Component instances in the structural architecture are left unbound, and the
component specification statements are collected in a separate analyzable unit called
a configuration declaration.

 Can be placed at the end of VHDL model or in a separate .vhd file
 Must be analyzed after the architecture they are configuring
 When the model is being simulated, it is the configuration declaration that is bound
to the component being tested in the testbench

 Very useful when multiple simulations of the same structural architecture with the
components bound to different library components for each simulation

o Structural architecture only need to analyzer once
o Analyze different configuration results in different structure
o Reduce errors and analysis time and promotes reuse of the models.

14. File I/O

Straightforward, refer to the sample code provided.

15. Signal Attributes
→ Used for signal objects for finding events, transactions, or timing of events or

transactions on signals
→ Very useful when model H/W properties
→ Attributes deal with events on a signal:
 ’STABLE return Boolean Signal
 ’EVENT, ’LAST_EVENT, ’LAST_VALUE return a value
→ Attributes deal with transactions on a signal:
 ’QUIET return Boolean Signal
 ’ACTIVE return Boolean value

’LAST_ACTIVE return a Time value
’TRANSACTION return a Bit signal

→ Common applications of signal attributes include:
 Edge detection, pulse width verification, glitch detection, etc.
→ Although s’EVENT and NOT s’STABLE are equivalent in most cases, ’STABLE

generates a signal, it is recommended in concurrent statements

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 27

→ Model Setup Time and Hold Time

Setup Time (Before the clock edge): Minimum required time between changes on the
data input and the triggering edge of the clock

Hold Time (After the clock edge): Minimum time that data input of a FF should stay
stable after the effective edge of the clock.

 Setup: (clock = ‘1’ AND NOT clock’ STABLE) AND (data’ STABLE (setup_time))
 Clock rise from 0 to 1 Data input has been stable at least for
 (clock’ EVENT) The amount of setup time

 Hold: (data’ EVENT) AND (clock = ‘1’) AND (clock’ STABLE (hold_time))
 There is a change Logic clock Clock has got a new value more recent
 on data input value is ‘1’ than the account of hold value
 (NOT data’ STABLE)

16. Generic parameter

→ Parameterize component models to better utilize gates or component models in different
design environment

→ The specific behavior of those models depends on the parameters that are determined by
the time they are used

→ For example: the S-R latch in the lab

 It can be constructed using NAND2 gates, to make it work, the gates should have

different delay parameters. Where to specify the delay parameters?
 Choice 1: Different code for each gate with different delay Inconvenient
 Choice 2: Use generic, delays are given when they are used

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 28

→ GENERIC is used as a means of communicating non-hardware and non-signal

information between designs, such as timing and delay
→ Similar to the PORT, we use GENERIC MAP
→ For example: the NAND2

 ENTITY nand2 IS
 GENERIC (tplh: TIME := 6 ns; tphl: TIME := 4 ns);
 PORT (a, b: IN BIT; o: OUT BIT);
 END nand2;

 ARCHITECTURE ave_delay OF nand2 IS
 BEGIN
 O <= a AND b AFTER (tplh+tphl) / 2;
 END ave_delay;

→ Default values will be used for tplh and tphl if they are not specified by another method
→ Default values will be overwritten if new generic values are specified when the new

component is used
→ GENERIC is used to pass values (generic parameters) through components.

→ The S-R latch example:
 ARCHITECTURE default OF sr_latch IS

 COMPONENT n2
 PORT (a, b: IN BIT; o: OUT BIT);
 END COMPONENT;
 FOR ALL: n2 USE ENTITY work.nand2 (ave_delay);
 SIGNAL im1, im2, im3, im4: BIT;
 BEGIN
 u0: n2 PORT MAP (s, c, im1);
 u1: n2 PORT MAP (c, r, im2);
 u2: n2 PORT MAP (im4, im1, im3);
 u3: n2 PORT MAP (im3, im2, im4);
 s0: q <= im3;
 s1: qbar <= im4;
 END default;

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 29

--Using generic parameters
 ARCHITECTURE fixed OF sr_latch IS

 COMPONENT n2
 GENERIC (tplh, tphl: TIME);
 PORT (a, b: IN BIT; o: OUT BIT);
 END COMPONENT;
 FOR ALL: n2 USE ENTITY work.nand2 (ave_delay);
 SIGNAL im1, im2, im3, im4: BIT;
 BEGIN
 u0: n2 GENERIC MAP (2 ns, 4 ns)

PORT MAP (s, c, im1);
 u1: n2 GENERIC MAP (2 ns, 4 ns)

 PORT MAP (c, r, im2);
 u2: n2 GENERIC MAP (3 ns, 5 ns)
 PORT MAP (im4, im1, im3);
 u3: n2 GENERIC MAP (3 ns, 5 ns)
 PORT MAP (im3, im2, im4);
 s0: q <= im3;
 s1: qbar <= im4;
 END fixed;

ENGI 5865 Digital Systems
Chapter 2: Basic Features of VHDL Instructor: Cheng Li 30

17. Generate statement

→ Purpose:
1. Reduce the number of lines of code (by removing repetition)
2. Make the code flexible

→ It is a concurrent statement
→ Several generate statement can be nested
→ One form using generate statement
 Use in a FOR loop
 H/W just replicated
 Application: 32-bit RCA
→ Another form of using: use IF followed by a condition for the generation

18. How to write the testbenches

→ Test vector selection
1. Exhaustive combination explosion impractical
2. Arbitrary can’t rely on the outcome
3. Make intelligent choice Great if you can do it
4. Test at different levels
5. Random Different from arbitrary, give equal chances

Basically, do (4), try to do (3), combined with (5).
Machines can do (4) and (5)
ATPG: Automatic Test Pattern Generators

19. Output Stage

1. Totempole (or Push-pull output)
 Like TTL, NAND Gate
2. High impedance (Tri-state)
3. Open collector outputs

