Chapter 5 Miscellaneous Aspects for Digital Systems

1. Dependability, Reliability, and Availability

- a. Dependability encompass the concept of reliability, availability, safety, performability, maintainability and testability
- b. Failure rate of a device (λ)
 - i. Circuit (# of gates, # of I/O pins, technology, etc)
 - ii. Environmental factors
 - iii. Others: e.g., who will do this, how it is documented, with ISO 9000 or not, etc.
- c. FIT (Failure in Time Unit): Number of failures in 10⁹ hours.
- d Bath Tub Curve for failure rate

e. Reliability: Conditional probability that the given system still works correctly at time t_1 given the system has been working correctly at t_0

P {works at t_1 | worked at t_0 }

Normally represented as 0.9999993 = 99.99993% = 0.963

f. Mean Time to Failure (MTTF)

 $MTTF = 1 / \lambda$

Example: given the failure rate λ of a digital circuit is 274 FIT, determine the MTTF for the circuit?

Instructor: Cheng Li

g. More commonly used is MTBF: Mean Time Between Failures

MTBF = MTTF + MTTR

MTTR: Mean time to repair, MTTR = $1/\mu$, where μ is the repair rate

h.	When there is no redundancy, every component in the system is critical (must be functioning for the system to function)		
	Failure rate of the system =		
	Reliability of the system =		
i.	If there's redundancy (HW, SW, Information (coding), Time)		
	Failure rate of the system =		
j.	For serial system, its reliability is given by		
J.	Torserial system, his remaining is given by		
k.	For parallel system, its reliability is given by		
1.	For high redundant system (M-of-N system), its reliability is given by		
m.	Read from the additional notes about the availability, maintainability and so on.		

Instructor: Cheng Li

2. Transmission Line Effort

- a. Statement: A transmission line has to be at least miles long (Y/N)? No, transmission line not necessary to be a wire miles long!
- b. Then, what is a transmission line?

 If the propagation delay of a segment of wire is greater than the transmission time of a pulse to be sent, it can be considered to be a transmission line
- c. Results from transmission line effects include Ringing, Overshooting, Undershooting, Producing Erroneous Signals
- d. Equivalent circuit of a segment of the transmission line

- L: inductance in Henry per unit length of wire
- C: Capacitance in Farads per unit length of wire
 Wire width, thickness, and spacing of conductors and dielectric constant of insulation materials decide the capacitance.

Time delay per unit length =

Characteristic impedance $Z_0 =$

Reflected voltage V_f =

e. Transmission Line Effect
Electricity travels roughly half of the speed of light $1 \text{ s light travels } 3 \times 10^8 \text{ m}$ 1 ns electricity travels 0.15 m

Instructor: Cheng Li

I =	, V =	
Analysis: Case 1: Matching Im	pedance	
Case 2: Short Circuit	z (when Z_0 equals internal resistance of the	power source)
Case 3: Short Circuit	z (Z_0 dose not match internal resistance of the	ne power sourc

Case 4: Open Circuit

Case 5: More General Case

3. Noise in Digital Systems

Questions:

- * Source of Noises and Types of Noises?
- * Effect of Noise on different parts of the system?
- * How to design and implement system to control noise?
- a. External or Radiation Noise
 - i. Electrostatic: Lighting (High Voltage Noise) Remedy → Use Aluminum (AL) chassis
 - ii. Electromagnetic: High current sources in the vicinity Examples: welding machine, current from large motors Remedy → Chassis made of high-µ ferromagnetic material
 - iii. Shielding

Instructor: Cheng Li

iv. Grounding depends on the frequency of signal

If low frequency signals (< 1 GHz)
Ground only one end of shielded wire.

If high frequency digital system with no amplifier Ground both ends of shielded wire.

Ribbon caller: use alternative lines as ground in high noise environment

b. Internal Noise

Mainly from the power supply.

FFs, one-shots, high-gain Op amps, Schmidt trigger input, and other regenerative modules are more prone to noise

Transducer producing low strength signals are vulnerable

To get rid of internal noise:

1) Decoupling: use decoupling capacitors

Across power supply inlet on a PCB $250-2000~\mu F$ electrolytic or tantalium and a 0.1 μF disc capacitor in parallel.

If this is not enough **\rightarrow**

Directly across the power supply pins of each critical chips connect to a $0.1~\mu F$ disc cap.

2) Grounding

Very important if unit consist of analog and electromechanical parts

- -- Each subsystem: should have its own (or isolated) power supply. At least have separate voltage regulators chips or DC/DC converters.
- -- Two grounding systems: chassis ground and AC power ground
- -- Use opto-couplers for electromechanical systems (Usually it's a must).

Instructor: Cheng Li

-- Avoid ground loops, use center point configuration for ground and power lines.