Chapter 5 Miscellaneous Aspects for Digital Systems

1. Dependability, Reliability, and Availability
 a. Dependability encompass the concept of reliability, availability, safety, performability, maintainability and testability
 b. Failure rate of a device (λ)
 i. Circuit (number of gates, number of I/O pins, technology, etc)
 ii. Environmental factors
 iii. Others: e.g., who will do this, how it is documented, with ISO 9000 or not, etc.
 c. FIT (Failure in Time Unit): Number of failures in 10^{9} hours.
 d. Bath Tub Curve for failure rate.

 e. Reliability: Conditional probability that the given system still works correctly at time t_1
given the system has been working correctly at t_0
P \{works at $t_1 |$ worked at t_0\}
Normally represented as 0.9999993 = 99.99993% = 0.9993

 f. Mean Time to Failure (MTTF)
 \[MTTF = \frac{1}{\lambda} \]
Example: given the failure rate λ of a digital circuit is 274 FIT, determine the MTTF for the circuit?

 g. More commonly used is MTBF: Mean Time Between Failures
 \[MTBF = MTTF + MTTR \]
 MTTR: Mean time to repair, $MTTR = \frac{1}{\mu}$, where μ is the repair rate
h. When there is no redundancy, every component in the system is critical (must be functioning for the system to function)

\[
\text{Failure rate of the system} =
\]
\[
\text{Reliability of the system} =
\]

i. If there’s redundancy (HW, SW, Information (coding), Time)

\[
\text{Failure rate of the system} =
\]

j. For serial system, its reliability is given by

k. For parallel system, its reliability is given by

l. For high redundant system (M-of-N system), its reliability is given by

m. Read from the additional notes about the availability, maintainability and so on.
2. Transmission Line Effort

a. Statement: A transmission line has to be at least miles long (Y/N)?
 No, transmission line not necessary to be a wire miles long!

b. Then, what is a transmission line?
 If the propagation delay of a segment of wire is greater than the transmission time of a
 pulse to be sent, it can be considered to be a transmission line

c. Results from transmission line effects include
 Ringing, Overshooting, Undershooting, Producing Erroneous Signals

d. Equivalent circuit of a segment of the transmission line

\[
L: \text{ inductance in Henry per unit length of wire} \\
C: \text{ Capacitance in Farads per unit length of wire} \\
\text{Wire width, thickness, and spacing of conductors and dielectric constant of} \\
\text{insulation materials decide the capacitance.}
\]

Time delay per unit length =

Characteristic impedance \(Z_0 = \)

Reflected voltage \(V_r = \)

e. Transmission Line Effect
 Electricity travels roughly half of the speed of light
 \(1 \text{ s light travels } 3 \times 10^8 \text{ m} \)
 \(1 \text{ ns electricity travels 0.15 m} \)
Assume characteristic impedance Z_0, then we will have

$$I = \, , \quad V = \, .$$

Analysis:

Case 1: Matching Impedance

Case 2: Short Circuit (when Z_0 equals internal resistance of the power source)

Case 3: Short Circuit (Z_0 dose not match internal resistance of the power source)
Case 4: Open Circuit

Case 5: More General Case

3. Noise in Digital Systems

Questions:
* Source of Noises and Types of Noises?
* Effect of Noise on different parts of the system?
* How to design and implement system to control noise?

a. External or Radiation Noise
 i. Electrostatic: Lighting (High Voltage Noise)
 Remedy ➔ Use Aluminum (AL) chassis

 ii. Electromagnetic: High current sources in the vicinity
 Examples: welding machine, current from large motors
 Remedy ➔ Chassis made of high-µ ferromagnetic material

 iii. Shielding
iv. Grounding depends on the frequency of signal

If low frequency signals (< 1 GHz)
 Ground only one end of shielded wire.

If high frequency digital system with no amplifier
 Ground both ends of shielded wire.

Ribbon caller: use alternative lines as ground in high noise environment

b. Internal Noise
 Mainly from the power supply.

 FFs, one-shots, high-gain Op amps, Schmidt trigger input, and other regenerative
 modules are more prone to noise
 Transducer producing low strength signals are vulnerable

 To get rid of internal noise:
 1) Decoupling: use decoupling capacitors
 Across power supply inlet on a PCB
 250 – 2000 µF electrolytic or tantalium and a 0.1 µF disc capacitor in
 parallel.

 If this is not enough ➔
 Directly across the power supply pins of each critical chips connect to a
 0.1 µF disc cap.

 2) Grounding
 Very important if unit consist of analog and electromechanical parts

 -- Each subsystem: should have its own (or isolated) power supply. At
 least have separate voltage regulators chips or DC/DC converters.

 -- Two grounding systems: chassis ground and AC power ground

 -- Use opto-couplers for electromechanical systems (Usually it’s a must).

 -- Avoid ground loops, use center point configuration for ground and
 power lines.