
II. QUEUING THEORY 
 
 
(a) General Concepts 
 
- queuing theory useful for considering performance  

analysis of packet switching and circuit switching 
 
General model of a queue: 
 
 
 
 
 
 
 
 
 
 
- in practice, queue size is finite (i.e., number of packets  

that can be queued is limited → extra packets 
discarded → "blocking") 

 
- if λ > μ ⇒ # queued packets will grow until queue  

saturated (remains full) or if queue size allowed to be 
∞ (in theory), # queued packets will grow without  
bound 

 
- ρ = λ/μ = utilization or traffic intensity 
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- as ρ → 1, queue becomes unstable 
 
- factors of interest: time delay, blocking performance,  

packet throughput (packets/time to get through) 
 
- queue modelled by considering 
 (1) packet arrival statistics 
 (2) service time distribution (i.e., packet length  
  distribution) 
 (3) service discipline - FIFO, priority discipline 
 (4) buffer size 
 (5) input population (finite or ∞) 
 
(b) Poisson Process 
 
- arrival process (eg. packets generated at input to packet  

switch network or call initiated in circuit switch  
network) are often assumed to be Poisson 

 
- continuous time: 
 
 
 
 
 
 
- discrete time: 
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- divide time t into n intervals of length Δt (very small) 
 
- let probability of arrival to queue in interval Δt = p+ and  

assume all arrival events are independent (i.e.,  
memoryless) 

 
- assume Δt is small enough so that probability of ≥ 2  

arrivals in Δt is negligible, i.e., p+ << 1, then p+ ≈ λΔt  
(recall λ = arrival rate) 

 
- rationale: 
 
 
 
 
 
 
 
 
 
- average # of arrivals in an interval t = λt = np+
 

⇒ p+ = λt/n 
 
- probability of exactly k arrivals in n = t/Δt intervals 
 
 Pk(n) =  
 
 
    (binomial distribution) 
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- hence, 
 
 
 
 
 
 
 
 
 
 
- for fixed t, let Δt → 0 ⇒ n→ ∞ since t = n⋅Δt  

(i.e., making discrete case continuous) 
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- probability of k arrivals in a time t 
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Notes: 
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(c) M/M/1 Queue 
 
Interarrival Time 
 
 
 
 
 
 
 
What is distribution? 
 
- consider arbitrary point in time t0 and define t0 = 0  
 

P(arrival at time t)  = P(no arrival in interval (0,t))  
    × P(arrival in interval (t, t + Δt)) 
 

      - using independence 
 
     = 
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- consider graph of f(t) = λe-λt

 
 
 
 
 
 
 
 
 
 
 
 
- since f(τ)Δt = probability = area under f(t) then f(t) = λe-λt  

is probability density function  
 
- now t0 = 0 can represent any arbitrary point in time, so 

since it can represent an arrival event point, the  
variable t represents an interarrival time 

 
∴ interarrival time has exponential distribution with  

pdf f(t) = λe-λt

 
 
Note: 
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Departures 
 
 
 
 
 
 
- assume packets in queue and let p- = probability of  

departure in interval Δt 
 
- define p- = μΔt  (recall μ = service or departure rate) 
 
∴ P(departure after n intervals) 
 
  =      (geometric distribution) 
 
 
 
 
 
 
 
 
 
 
 
∴ service/departure time pdf 
 
  f(t) = μe-μt  Exponential (same as arrivals) 
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M/M/1 Queue: 
 
 
 
 
 
 
 
 
 
 
M / M / 1  
       → Markov Arrivals / Markov Departures / One Server 
 
- Markov process → memoryless process 
 
- M/M/1 ⇒ Poisson arrivals, exponential service times, one  

server 
 
(d) Discrete Model of M/M/1 Queue 
 
- let k = # packets in queue including packet being served 
 
- hence, k is a random variable and can be considered to be  

queue state 
 
- now divide time into small intervals of Δt 
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State diagram: 
 
 
 
 
 
 
 
 
- state transition for every interval 
 
Pk = probability system in state k in an interval 
 
 
  ⇒ 
 
 
 
Lemma 1 
 
 
 
     - by definition of pdf 
 
Lemma 2 
 
 
 
 
Theorem 
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- an interpretation 
 
 
 
 
 
 
Proof of theorem by induction: 
 
Base Case: 
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Induction Case: 
 
- show if it is true for k - 1, it is true for k 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: 
- if you know one state probability and transition 

probabilities, you can determine probability of being  
in any state 

- expect Pk → 0 as k → ∞ or queue will blow up 
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What is mean # of customers in queue? 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ρ
ρ
−
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k
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What is variance of k?  (variance is a measure of spread) 
 
 
 
 
 

2
2
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- conservation of customers for M/M/1 (∞ size) 
 
 
 
 
 
 
 
 
 
 
 
What is time spent in queue? 
 
Little's Theorem:  Tk λ=   

 
where T  = average time spent in system  

(including service time) 
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intuition: 
 
 
 
 
 
 
 
 
 
- if serviced in T and still k  customers in queue, then for  

equilibrium λ=Tk /  
 
- makes intuitive sense but will not formally prove 
 
- holds for M/M/1 and many other queues as well 
 
(e) Queues with Finite Buffers 
 
M/M/1 queue of size N  → M/M/1/N 
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- buffer overflow occurs when k = N and packet arrives 
 
- can use same state analysis as previous, except only N+1  

states, instead of infinite number of states 
 
- so  
 
 
 
 
 
 
 
 
 
 
 
 
 
- mean of k 
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Conservation perspective: 
 
 
 
 
 
 
 
 

but   γ = μ(1-P0) 
 
 
rate of servicing    fraction of time customer being served 
 
∴ μ(1-P0) = λ(1-PB) B
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P

−
−

==
1
1 0

μ
λ

ρ  

 

∴ ρ
ρ)1(0 −−

=
PPB  

 
- recall 
 
 
 
 
 
 

∴ PB = PB N
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(f) Extensions of M/M/1 Queue 
 
(i) Multiple Sources 
 
- combining two or more Poisson processes  

⇒ Poisson process 
 
 
 
 
 
 
 
 
 
 
 
 
(ii) Multiple Servers 
 
M/M/m Queue: 
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- let k represent packets served and packets waiting and 
consider 2 cases:  

 
(1) k ≤ m   (i.e., all customers being served) 
 
 
 
 
 
 
 
 
 
 
 
(2) k ≥ m   (i.e., m customers being served, k - m  

waiting) 
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- for k ≤ m    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- for k ≥ m    
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What is probability customer arrives at system and must 
wait to be served? 
 

PW = 
 
 
 
 
 
 
 

PW = 
 
 
 
    Erlang C Formula for M/M/m queue 
 
(iii) Feedback 
 
- simple communication system model 
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→ in this case arrivals to Q2 are Poisson but loss may  
occur  

 
- to minimize loss use feedback → feedback channel to  

shut off transmitter when receiver full 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- arrivals toQ2 are now not Poisson, although μ2 ≥ λ1 or  

queue Q1 will blow up 
 
 
(g) M/G/1 System 
 
- often exponential service time is not an accurate model 
 
 eg. in ATM, fixed size cell ⇒ deterministic service  

time of cell size / link rate 
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- "G" represents general distribution for service time τ with  
known mean and variance 

 
 
 
 
 
 
 
 
 
 
- let T = time in system, W = time waiting in queue 
 

so  T = W + τ 
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and average customers in queue given by Tk λ=  
 (Little's Theorem) 
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Special Cases: 
 
 
 
 
 
 
 
 
 
Example Queuing Problem: 
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                                                                                                            QUEUING 26



(h) Queuing Network Examples 
 
- communication networks are, in fact, complex network of 

queues 
 
Example 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2: 
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Example 3: 
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Closed Queuing Networks 
 
Aside: Norton equivalent of queuing network 
 
N packets circulating around closed queuing network 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- service rate dependent on number in queue 
 
- derived by short circuitry A → B and allowing n  

customers to circulate 
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Example 4: 
 
Sliding Window Flow Control with window size N 
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- assume all queues have same average service rate  
(i.e., same average packet sizes and link rates) 

 
- assume ACKs are sent on high priority zero delay channel  

and are sent for every packet 
 
- queue M+1 is an artificial queue used to represent  

generation of packets to send 
 
- equivalent network: 
 
 
 
 
 
 
 
 
 
What is u(n)? 
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∴ substituting (3) into (1) gives 
 
 Pn =  
 
 

and then from (2) 
 
  P0 =  
 
 
- now throughput 
 

γ =  
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- using Little's formula, average total delay 
 
 
 
 
 
 
→ could determine average delay from parameters N, M, μ,  

λ for sliding window flow control 
 
- consider scenario where λ → ∞ (i.e., packets served in  

zero time for queue M+1 implying data packets sent 
immediately following ACK) 
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