II. QUEUING THEORY

(a) General Concepts

- queuing theory useful for considering performance analysis of packet switching and circuit switching

General model of a queue:

- in practice, queue size is finite (i.e., number of packets that can be queued is limited → extra packets discarded → "blocking")
- if λ > μ ⇒ # queued packets will grow until queue saturated (remains full) or if queue size allowed to be ∞ (in theory), # queued packets will grow without bound
- $\rho = \lambda/\mu$ = utilization or traffic intensity

- as $\rho \rightarrow 1$, queue becomes unstable
- factors of interest: time delay, blocking performance, packet throughput (packets/time to get through)
- queue modelled by considering
 - (1) packet arrival statistics
 - (2) service time distribution (i.e., packet length distribution)
 - (3) service discipline FIFO, priority discipline
 - (4) buffer size
 - (5) input population (finite or ∞)

(b) Poisson Process

 arrival process (eg. packets generated at input to packet switch network or call initiated in circuit switch network) are often assumed to be Poisson

- continuous time:

- discrete time:

- divide time t into n intervals of length Δt (very small)
- let probability of arrival to queue in interval $\Delta t = p_+$ and assume all arrival events are independent (i.e., memoryless)
- assume Δt is small enough so that probability of ≥ 2 arrivals in Δt is negligible, i.e., $p_+ \ll 1$, then $p_+ \approx \lambda \Delta t$ (recall λ = arrival rate)
- rationale:

- average # of arrivals in an interval $t = \lambda t = np_+$

$$\Rightarrow p_+ = \lambda t/n$$

- probability of exactly *k* arrivals in $n = t/\Delta t$ intervals

 $P_k(n) =$

(binomial distribution)

- hence,

- for fixed *t*, let $\Delta t \rightarrow 0 \Rightarrow n \rightarrow \infty$ since $t = n \cdot \Delta t$ (i.e., making discrete case continuous) $\lim_{n \to \infty} P_k(n) = P_k(t)$ (discrete) (continuous)

- probability of *k* arrivals in a time *t*

$$P_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
 Poisson Distribution

Notes:

(c) M/M/1 Queue

Interarrival Time

What is distribution?

- consider arbitrary point in time t_0 and define $t_0 = 0$

 $P(\text{arrival at time } t) = P(\text{no arrival in interval } (0,t)) \\ \times P(\text{arrival in interval } (t, t + \Delta t))$

- using independence

=

- consider graph of $f(t) = \lambda e^{-\lambda t}$

- since $f(\tau)\Delta t$ = probability = area under f(t) then $f(t) = \lambda e^{-\lambda t}$ is probability density function
- now $t_0 = 0$ can represent any arbitrary point in time, so since it can represent an arrival event point, the variable *t* represents an interarrival time
- : interarrival time has exponential distribution with $pdf f(t) = \lambda e^{-\lambda t}$

Note:

Departures

- assume packets in queue and let p_{-} = probability of departure in interval Δt
- define $p_{-} = \mu \Delta t$ (recall μ = service or departure rate)
- \therefore *P*(departure after *n* intervals)

=

(geometric distribution)

∴ service/departure time pdf

 $f(t) = \mu e^{-\mu t}$ Exponential (same as arrivals)

M/M/1 Queue:

- M / M / 1 \rightarrow Markov Arrivals / Markov Departures / One Server
- Markov process \rightarrow memoryless process
- $M/M/1 \Rightarrow$ Poisson arrivals, exponential service times, one server

(d) Discrete Model of M/M/1 Queue

- let k = # packets in queue including packet being served
- hence, *k* is a random variable and can be considered to be queue state
- now divide time into small intervals of Δt

State diagram:

- state transition for every interval

 P_k = probability system in state k in an interval

 \Rightarrow

Lemma 1

- by definition of pdf

Lemma 2

Theorem

- an interpretation

Proof of theorem by induction:

Base Case:

Induction Case:

- show if it is true for *k* - 1, it is true for *k*

Note:

 if you know one state probability and transition probabilities, you can determine probability of being in any state

- expect $P_k \rightarrow 0$ as $k \rightarrow \infty$ or queue will blow up

QUEUING 13

What is mean # of customers in queue?

$$\bar{k} = \frac{\rho}{1 - \rho}$$

What is variance of *k*? (variance is a measure of spread)

$$\sigma_k^2 = \frac{\rho}{\left(1-\rho\right)^2}$$

- conservation of customers for M/M/1 (∞ size)

What is time spent in queue?

Little's Theorem: $\overline{k} = \lambda \overline{T}$

where \overline{T} = average time spent in system (including service time)

intuition:

- if serviced in *T* and still \overline{k} customers in queue, then for equilibrium $\overline{k} / \overline{T} = \lambda$
- makes intuitive sense but will not formally prove
- holds for M/M/1 and many other queues as well

(e) Queues with Finite Buffers

M/M/1 queue of size $N \rightarrow M/M/1/N$

- buffer overflow occurs when k = N and packet arrives
- can use same state analysis as previous, except only *N*+1 states, instead of infinite number of states

- SO

- mean of k

Conservation perspective:

but
$$\gamma = \mu(1-P_0)$$

rate of servicing fraction of time customer being served

$$\therefore \mu(1-P_0) = \lambda(1-P_B)$$

$$\rho = \frac{\lambda}{\mu} = \frac{1-P_0}{1-P_B}$$

$$\therefore P_B = \frac{P_0 - (1-\rho)}{\rho}$$

- recall

$$\therefore P_B = P_N$$

(f) Extensions of M/M/1 Queue

(i) Multiple Sources

- combining two or more Poisson processes \Rightarrow Poisson process

(ii) Multiple Servers

M/M/m Queue:

- let *k* represent packets served and packets waiting and consider 2 cases:

(1) $k \le m$ (i.e., all customers being served)

(2) $k \ge m$ (i.e., *m* customers being served, k - m waiting)

- for $k \le m$

- for $k \ge m$

What is probability customer arrives at system and must wait to be served?

 $P_W =$

 $P_W =$

Erlang C Formula for M/M/m queue

(iii) Feedback

- simple communication system model

- → in this case arrivals to Q2 are Poisson but loss may occur
- to minimize loss use feedback → feedback channel to shut off transmitter when receiver full

- arrivals toQ2 are now not Poisson, although $\mu_2 \ge \lambda_1$ or queue Q1 will blow up

(g) M/G/1 System

- often exponential service time is not an accurate model

eg. in ATM, fixed size cell ⇒ deterministic service time of cell size / link rate - "G" represents general distribution for service time τ with known mean and variance

- let T = time in system, W = time waiting in queue

so
$$T = W + \tau$$

$$E\{W\} = \frac{\lambda E\{\tau^2\}}{2(1-\rho)}$$

and average customers in queue given by $\overline{k} = \lambda \overline{T}$ (Little's Theorem) Special Cases:

Example Queuing Problem:

(h) Queuing Network Examples

- communication networks are, in fact, complex network of queues

Example 1:

Example 2:

Example 3:

Closed Queuing Networks

Aside: Norton equivalent of queuing network

N packets circulating around closed queuing network

- service rate dependent on number in queue
- derived by short circuitry $A \rightarrow B$ and allowing *n* customers to circulate

Example 4:

Sliding Window Flow Control with window size N

- assume all queues have same average service rate (i.e., same average packet sizes and link rates)
- assume ACKs are sent on high priority zero delay channel and are sent for every packet
- queue *M*+1 is an artificial queue used to represent generation of packets to send
- equivalent network:

What is u(n)?

: substituting (3) into (1) gives

 $P_n =$

and then from (2)

 $P_0 =$

- now throughput

$$\gamma =$$

- using Little's formula, average total delay

 \rightarrow could determine average delay from parameters *N*, *M*, μ , λ for sliding window flow control

- consider scenario where $\lambda \rightarrow \infty$ (i.e., packets served in zero time for queue *M*+1 implying data packets sent immediately following ACK)