
 SCHED 1

III. SCHEDULING

(a) General Concepts

- servicing of queues in network requires scheduling

 discipline to determine order that packets serviced

eg. queues on network links, queues for servers

 scheduler responsible for managing delays of

packets and discarding of packets when queue full

- most obvious approach: first-come, first-serve (FCFS)

- in general, packets associated with different connections

or classes of service can have different priorities,

delays, and loss requirements

- conceptually:

 SCHED 2

- 2 general service categories:

 (1) guaranteed service

 network resources reserved to achieve

performance bounds

 "quality of service" (QoS)

 (2) best effort

 no reservation of network resources required

 fairness in resource allocation critical

Typical QoS Parameters

Bandwidth: - minimum specified

Delay: - could specify worst case upper bound

or average case upper bound

Loss: - upper bound on fraction of packets

lost

Delay Jitter: - upper bound on difference between

largest and smallest delays

 SCHED 3

- delay jitter critical in audio and video playback

applications where constant information required

- jitter can be removed at receiver by using "elasticity"

buffer but larger jitter large buffers

 desirable to minimize jitter in network

(b) Priority Scheduling

- obvious way to give connections levels of service

- approach: logically put packets into a queue based on

priority level

- discipline: serve packet from queue n unless empty, then

serve packet from queue n-1 unless empty, then serve

packet from queue n-2, etc.

- problem: low priority queues can be starved if higher

priorities take all server's time

 SCHED 4

- very easy to implement in both hardware and software but

cannot guarantee quality of service

(c) Work-Conserving vs. Non-Work-Conserving

Scheduling

- scheduler is "work-conserving" if only idle when queues

empty

 decreasing delay for queue i by giving more service

to queue i will increase delay for other queues

 scheduling discipline can only trade-off delay

between queues

 SCHED 5

- scheduler is "non-work-conserving" if server may be idle

when queues not empty

 NWC scheduling can be utilized to minimize delay

jitter and to reduce buffers required for small

packet loss by smoothing out traffic

(d) Max-Min Fair Sharing

- one technique to share resource that satisfies users with

small demands and distributes remaining resource

evenly to large demand users

- assume resource with capacity C and n users with

demands d1, d2, ... , dn (in ascending order)

- procedure:

 resources allocated in order of increasing demand

 so user gets a share of no more than 1/k of

remaining capacity of resource if k users left

 no user gets a share greater than its demand

 users with unsatisfied demand get an equal share

eg. - user 1 gets up to C/n of resource

 - if d1 > C/n, then user 1 gets C/n of resource and user

2 gets up to C/n of resource

 SCHED 6

 - if d1 < C/n, then user 1 gets d1 of resource and user 2

gets up to (C-d1)/(n-1) of resource

 etc.

- no user gets more than demanded or, if demand not met,

no less than any source with higher demand

- "max-min fair" maximizes minimum share of a user

whose demand not satisfied

- can give users weights w1, w2, ... , wn to reflect relative

share (i.e., reflects priority of resource use)

- now limit on allocated share is in proportion to weight

Example:

 SCHED 7

(e) Scheduling Best-Effort Connections

- fairness critical, i.e., max-min fair sharing desirable

Generalized Processor Sharing (GPS)

- idealized mechanism that achieves max-min fair sharing

 SCHED 8

- packets go into a logical queue associated with their

connection

- each queue visited in round robin fashion and served for a

very small increment of time t if queue not empty

- as t 0, achieves max-min fair share

- can weight queue i with wi and serve for time wi t in

each rotation

- GPS unimplementable!

 How can we serve a portion of a packet in a time

t 0?

Example:

 SCHED 9

Weighted Round Robin

- similar to GPS except t 0 but serve an entire packet in

a rotation

- connections (i.e., queues) can have weights

- emulates GPS well for small, fixed size packets

(eg. ATM)

 over long enough periods of time very fair

What if packet size not constant?

 normalize connection weights by dividing by mean

packet size

 difficult to know mean packet size!

Weighted Fair Queuing

- basic concept:

 compute "times" to finish serving packets with

GPS server and then serve packets in order of

finishing "times" (actually "finishing numbers")

- let finish number = number used to reflect time at which

packet finished (but not really finish time)

- consider a GPS server where t = 1 bit time

- one round = serving one bit from all "active" connections

(i.e., one round not constant time)

 SCHED 10

- an active connection has largest finish number of packet

waiting in queue or currently being served

> current round number

 time for one round = # active connections t

FN calculation:

- packet arriving at inactive connection (i.e., empty queue):

 FN = current round number + # bits in packet

- packet arriving at active connection (i.e., non-empty

 queue):

FN = largest FN of packet in queue + # bits in packets

- FN does not depend on future arrivals, i.e., once

computed does not change

- round number does not increase at a constant rate with

respect to time but at a rate inversely proportional to

active connections

 SCHED 11

RN = t link rate / # active connections + constant

 (bits)

 RN vs. time = piece-wise linear graph

- when RN = FN indicates packet "done" according to

simulated GPS servicing

- in real scheduling, packets are served in order of FN

- do not need to view RN as # rounds for bit-by-bit round

robin server

 can view as real-valued variable proportional to

active connections, i.e., RN just an abstraction

- complexity not in determining FN given RN but in

determining RN

See WFQ example.

 SCHED 12

- buffer drop policy: when packet comes into queue, if

necessary, packets with largest finishing numbers can

be dropped to make room for packets

- for "weighted" fair queuing:

 assume wi = weight of i-th connection

- WFQ implemented in routers and ATM switches

(f) Scheduling Guaranteed-Service Connections

- can use WFQ to provide bandwidth and worst-case delay

bounds

eg. bandwidth allocated to connection i on a link can be

determined by

ratelink
w

w

j j

i

 SCHED 13

- delay jitter: WFQ not directly useful but one non-work-

conserving approach:

- can hold packets in regulator queue for connection i so

that packets do not arrive at scheduler any faster than a

specified rate

- evens out delays during packet bursts so that total end-to-

end delay more consistent

