
 SCHED 1

III. SCHEDULING

(a) General Concepts

- servicing of queues in network requires scheduling

 discipline to determine order that packets serviced

eg. queues on network links, queues for servers

 scheduler responsible for managing delays of

packets and discarding of packets when queue full

- most obvious approach: first-come, first-serve (FCFS)

- in general, packets associated with different connections

or classes of service can have different priorities,

delays, and loss requirements

- conceptually:

 SCHED 2

- 2 general service categories:

 (1) guaranteed service

  network resources reserved to achieve

performance bounds

 "quality of service" (QoS)

 (2) best effort

  no reservation of network resources required

 fairness in resource allocation critical

Typical QoS Parameters

Bandwidth: - minimum specified

Delay: - could specify worst case upper bound

or average case upper bound

Loss: - upper bound on fraction of packets

lost

Delay Jitter: - upper bound on difference between

largest and smallest delays

 SCHED 3

- delay jitter critical in audio and video playback

applications where constant information required

- jitter can be removed at receiver by using "elasticity"

buffer but larger jitter  large buffers

  desirable to minimize jitter in network

(b) Priority Scheduling

- obvious way to give connections levels of service

- approach: logically put packets into a queue based on

priority level

- discipline: serve packet from queue n unless empty, then

serve packet from queue n-1 unless empty, then serve

packet from queue n-2, etc.

- problem: low priority queues can be starved if higher

priorities take all server's time

 SCHED 4

- very easy to implement in both hardware and software but

cannot guarantee quality of service

(c) Work-Conserving vs. Non-Work-Conserving

Scheduling

- scheduler is "work-conserving" if only idle when queues

empty

 decreasing delay for queue i by giving more service

to queue i will increase delay for other queues

 scheduling discipline can only trade-off delay

between queues

 SCHED 5

- scheduler is "non-work-conserving" if server may be idle

when queues not empty

 NWC scheduling can be utilized to minimize delay

jitter and to reduce buffers required for small

packet loss by smoothing out traffic

(d) Max-Min Fair Sharing

- one technique to share resource that satisfies users with

small demands and distributes remaining resource

evenly to large demand users

- assume resource with capacity C and n users with

demands d1, d2, ... , dn (in ascending order)

- procedure:

  resources allocated in order of increasing demand

 so user gets a share of no more than 1/k of

remaining capacity of resource if k users left

  no user gets a share greater than its demand

  users with unsatisfied demand get an equal share

eg. - user 1 gets up to C/n of resource

 - if d1 > C/n, then user 1 gets C/n of resource and user

2 gets up to C/n of resource

 SCHED 6

 - if d1 < C/n, then user 1 gets d1 of resource and user 2

gets up to (C-d1)/(n-1) of resource

 etc.

- no user gets more than demanded or, if demand not met,

no less than any source with higher demand

- "max-min fair"  maximizes minimum share of a user

whose demand not satisfied

- can give users weights w1, w2, ... , wn to reflect relative

share (i.e., reflects priority of resource use)

- now limit on allocated share is in proportion to weight

Example:

 SCHED 7

(e) Scheduling Best-Effort Connections

- fairness critical, i.e., max-min fair sharing desirable

Generalized Processor Sharing (GPS)

- idealized mechanism that achieves max-min fair sharing

 SCHED 8

- packets go into a logical queue associated with their

connection

- each queue visited in round robin fashion and served for a

very small increment of time t if queue not empty

- as t  0, achieves max-min fair share

- can weight queue i with wi and serve for time wi  t in

each rotation

- GPS unimplementable!

 How can we serve a portion of a packet in a time

t  0?

Example:

 SCHED 9

Weighted Round Robin

- similar to GPS except t  0 but serve an entire packet in

a rotation

- connections (i.e., queues) can have weights

- emulates GPS well for small, fixed size packets

(eg. ATM)

  over long enough periods of time very fair

What if packet size not constant?

  normalize connection weights by dividing by mean

packet size

  difficult to know mean packet size!

Weighted Fair Queuing

- basic concept:

  compute "times" to finish serving packets with

GPS server and then serve packets in order of

finishing "times" (actually "finishing numbers")

- let finish number = number used to reflect time at which

packet finished (but not really finish time)

- consider a GPS server where t = 1 bit time

- one round = serving one bit from all "active" connections

(i.e., one round not constant time)

 SCHED 10

- an active connection has largest finish number of packet

waiting in queue or currently being served

> current round number

 time for one round = # active connections  t

FN calculation:

- packet arriving at inactive connection (i.e., empty queue):

 FN = current round number + # bits in packet

- packet arriving at active connection (i.e., non-empty

 queue):

FN = largest FN of packet in queue + # bits in packets

- FN does not depend on future arrivals, i.e., once

computed does not change

- round number does not increase at a constant rate with

respect to time but at a rate inversely proportional to

active connections

 SCHED 11

RN = t  link rate / # active connections + constant

 (bits)

 RN vs. time = piece-wise linear graph

- when RN = FN indicates packet "done" according to

simulated GPS servicing

- in real scheduling, packets are served in order of FN

- do not need to view RN as # rounds for bit-by-bit round

robin server

 can view as real-valued variable proportional to

active connections, i.e., RN just an abstraction

- complexity not in determining FN given RN but in

determining RN

See WFQ example.

 SCHED 12

- buffer drop policy: when packet comes into queue, if

necessary, packets with largest finishing numbers can

be dropped to make room for packets

- for "weighted" fair queuing:

  assume wi = weight of i-th connection

- WFQ implemented in routers and ATM switches

(f) Scheduling Guaranteed-Service Connections

- can use WFQ to provide bandwidth and worst-case delay

bounds

eg. bandwidth allocated to connection i on a link can be

determined by

ratelink
w

w

j j

i 


 SCHED 13

- delay jitter: WFQ not directly useful but one non-work-

conserving approach:

- can hold packets in regulator queue for connection i so

that packets do not arrive at scheduler any faster than a

specified rate

- evens out delays during packet bursts so that total end-to-

end delay more consistent

