Concrete Gravity Based Structure

Coastal Labrador Natural Gas Extraction

Midterm Report
PROJECT SCOPE

Develop a Design Basis Memorandum, preliminary conceptual design, and cost estimate for an offshore Gravity Based Structure (GBS) for the extraction of Natural Gas from the Coast of Labrador
PRINCIPLE OBJECTIVES

- Design Basis Memorandum
 - Geotechnical Parameters
 - Environmental Design Criteria
- GBS Design Options
 - Advantages/Disadvantages
 - Preliminary Quantities
- Preferred Option Report
 - Quantities/Cost Estimates
PROBABLE GBS SITES
GBS SITE CHOSEN
Petroleum Reserves and Resources - Newfoundland Offshore Area

<table>
<thead>
<tr>
<th>Field</th>
<th>Oil</th>
<th>Gas</th>
<th>NGLs*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^6 m³</td>
<td>10^8 m³</td>
<td>million bbl</td>
</tr>
<tr>
<td>Grand Banks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiborne</td>
<td>197.6</td>
<td>1244</td>
<td>50.6</td>
</tr>
<tr>
<td>Terra Nova</td>
<td>36.3</td>
<td>314</td>
<td>1.3</td>
</tr>
<tr>
<td>Hebron</td>
<td>92.4</td>
<td>551</td>
<td>-</td>
</tr>
<tr>
<td>White Rose</td>
<td>45.0</td>
<td>283</td>
<td>76.7</td>
</tr>
<tr>
<td>West Ben Nevis</td>
<td>5.7</td>
<td>56</td>
<td>-</td>
</tr>
<tr>
<td>Mena</td>
<td>3.6</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Ben Nevis</td>
<td>18.1</td>
<td>114</td>
<td>12.1</td>
</tr>
<tr>
<td>North Ben Nevis</td>
<td>2.6</td>
<td>15</td>
<td>3.3</td>
</tr>
<tr>
<td>Springdale</td>
<td>2.7</td>
<td>14</td>
<td>6.7</td>
</tr>
<tr>
<td>Nautilus</td>
<td>2.1</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>King’s Cove</td>
<td>1.6</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>South Tensmire</td>
<td>1.3</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>East Rankin</td>
<td>1.1</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Fortune</td>
<td>0.6</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>South More</td>
<td>0.6</td>
<td>4</td>
<td>4.1</td>
</tr>
<tr>
<td>West Bumstead Bay</td>
<td>5.7</td>
<td>38</td>
<td>-</td>
</tr>
<tr>
<td>North Dana</td>
<td>-</td>
<td>-</td>
<td>13.3</td>
</tr>
<tr>
<td>Trave</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>437.3</td>
<td>2752</td>
<td>168.9</td>
</tr>
<tr>
<td>Labrador Shelf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Bjarni</td>
<td>-</td>
<td>-</td>
<td>63.3</td>
</tr>
<tr>
<td>Grimri</td>
<td>-</td>
<td>-</td>
<td>26.0</td>
</tr>
<tr>
<td>Bjarni</td>
<td>-</td>
<td>-</td>
<td>24.3</td>
</tr>
<tr>
<td>Hopevale</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Snena</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>0.6</td>
<td>0</td>
<td>119.6</td>
</tr>
<tr>
<td>Total</td>
<td>447.9</td>
<td>2752</td>
<td>180.5</td>
</tr>
<tr>
<td>Produced†</td>
<td>98.9</td>
<td>672</td>
<td>0.0</td>
</tr>
<tr>
<td>Remaining</td>
<td>345.4</td>
<td>2080</td>
<td>180.5</td>
</tr>
</tbody>
</table>

1. *Reserves* are volumes of hydrocarbons proven by drilling, testing and interpretation of geological, geophysical and engineering data, that are considered to be recoverable using current technology and under present and anticipated economic conditions. Hiborne, Terra Nova, and White Rose are classified as reserves.

2. *Resources* are volumes of hydrocarbons, expressed at 50% probability of occurrence, assessed to be technically recoverable that have not been delineated and have unknown economic viability.

3. Natural Gas Liquids

4. Produced oil reserves also include a small quantity of natural gas liquids. Produced volumes as of December 31, 2005.
2.2 Trillion Cubic Feet of natural gas
Located 100km off the Labrador coast at a water depth of 150m
10-40m layer of sediment on the ocean floor
Large design loads necessitate large foundations
Lateral load is a substantial fraction of the vertical load, therefore the overturning moment is very large
There is a major cyclic component of loads
Large settlement due to soft seabed deposits near sea floor
GEOTECHNICAL
Foundation Failure

Modes of Foundation Failure

- Bearing Capacity
- Overturning
- Differential Settlement
- Sliding
- Excessive Settlement
- Liquefaction
ENVIRONMENTAL DESIGN CRITERIA

- **WAVE LOAD DATA**
 - 100 yr Wave Height \(30m\)
 - Associated Wave Period **16-19 secs**
 - Wave is classified as an intermediate wave
 (Linear Wave Theory)
ENVIRONMENTAL DESIGN CRITERIA

• **WIND SPEEDS (100 yr Return)**
 - 1-Hour Mean Wind Speed 44 m/s
 - 3-second gust 61 m/s
ENVIRONMENTAL DESIGN CRITERIA

- **PACK ICE DATA**
 - Measured Depths of up to 8m
 - Multi-year floes
 - Flexural Strength measures up to 0.7MPa
 - Local Strength Parameters 10.0MPa
 - Global Strength Parameters 2.4MPa
 - Crushing Failure
ENVIRONMENTAL DESIGN CRITERIA

• **DESIGN ICEBERG**
 - Petro-Canada *Bjarni/North Bjarni “Production Perspectives Study”* (1983)
 - 20,000,000 Metric Tonnes
 - Tabular Shape, 55m deep, 636m wide
 - ~2700MN Force on Impact with structure
 - Hibernia – 1300MN
 - ~335GN·m Overturning Moment
 - Hibernia - 84GN·m
GBS DESIGNS

MULTIPLE LEGGED STRUCTURES

- Ability to withstand moderate ice conditions
- Inability to withstand the load of an iceberg
- Slender legged shapes provide little to no storage
- Predominant in North Sea
GBS DESIGNS
MULTIPLE LEGGED STRUCTURES

TROLL A

- Location: North Sea
- Structure Height: 472 m
- Ocean Depth: 303 m
- Structure Weight: 656,000 Te
GBS DESIGNS

STEPPED CASSION STRUCTURES

- Good stability against overturning
- Geometry causes failure of ice features and energy dissipation at controlled rate
- Concurrent construction of major parts possible
- Constructability issues due to geometry
GBS DESIGNS

STEPPED CASSION STRUCTURES

STEPPED STRUCTURE
Conceptual Design

- Location: Beaufort Sea, Labrador Sea
- Ocean Depth: 50-200 m
GBS DESIGNS
CONICAL STRUCTURES

- Wide base provides stability
- Offers reduced area at water surface
- Inclined edge reduces ice loads
- Curved walls allows distribution of environmental loads
- Geometry reduces maximum storage
GRAND BANKS GBS
Conceptual Design

- **Location:** Atlantic Ocean
- **Ocean Depth:** 80 to 120 m
- **Silo shaped cylinders provide flotation and ballast**
GBS DESIGNS

CYLINDRICAL STRUCTURES

- Provide greater stability during construction and tow out
- Attract higher wave and iceberg loads
- Greater mass resists larger ice features
- Large flat roof causes design and constructability issues
GBS DESIGNS
CYLINDRICAL STRUCTURES

HIBERNIA

- Structure Height: 224m
- Ocean Depth: 111 m
- Structure Weight: ≈ 1.1 million Te
- Unique wedge shaped outer wall
Outline

• GBS Design Possibilities
• Design Basis Memorandum
 • Methodology
 • Conclusions
• Conceptual Design Options (Site Specific)
 • Advantages/Disadvantages
• Preferred Option Report
 • Quantities/Cost Estimates
PROJECT SCHEDULE

Outstanding Items

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Feb 11, '07</th>
<th>Feb 13, '07</th>
<th>Feb 26, '07</th>
<th>Mar 4, '07</th>
<th>Mar 11, '07</th>
<th>Mar 13, '07</th>
<th>Mar 20, '07</th>
<th>Apr 1, '07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Work Plan Submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broad Design Options - GBS Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Flow, Iceberg, Waves etc. Design Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth, Current, Geotechnical Challenge Review/Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Basis Memorandum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose Applicable GBS Design Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBS Options - Preliminary Design/Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBS Options - Preliminary Estimates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid Term Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBS Options - Advantages/Disadvantages Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose Preferred GBS Design Option</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid Term Report Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detailed Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detailed Quantities Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detailed Cost Estimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Option Report/Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report Submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank You!

Questions/Comments

End of Show
CELEBRITIES IN ENGINEERING

An Updated Version
STAY TUNED!

Control the pet population, have your pet spayed or neutered!