Rubble Mound Breakwater Design

Justin Skinner
Teaching Assistant – ENGI 8971
Coastal and Ocean Engineering
July 8, 2010

Rubble Mound Breakwaters

- Consist of stone or other material dumped in place
- Relatively inexpensive and useful

Purpose:

To protect coastal areas from high intensity wave action

Breakwater near ferry entrance of Port aux Basques, NL

Breakwater Design

Hudson Formula:

$$W = \frac{\gamma_a H^3}{K_D (S_a - 1)^3 \cot \alpha}$$

Where:

Symbol	Meaning	Units
W	Weight of individual stone	N
Gamma (a)	Specific weight of stone	N/m^3
Н	Wave height	m
K(d)	Stone shape coefficient	
S(a)	Specific gravity of stone	
Alpha	Slope angle of breakwater	degrees

Design Facts

- Designed with layers of different size stones
- One or two exterior layers of large armor units
- Units may be stone or concrete
- Weight of armor stone must be able to resist wave forces
- Cannot be all armor stone due to high porosity (plus the price)

Important Considerations

Wave height

Significant wave height versus H10 wave height (recommended)

Breaking or non-breaking

Does it break on the structure or is overtopping permitted

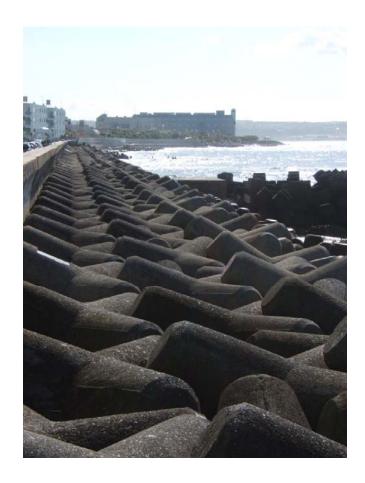
Stability

- Interlocking blocks provide more stability (tribar, dolos or tetrapods)
- Cost considerations?

Important Considerations

- Slope
 - Flatter slopes increase stability
 - Flatter slopes increase size and cost
- Number of Layers
 - Typically use two
- Must evaluate risk versus cost Key engineering decision!

Quarry Stone



Tetrapods

Tribar



Dolos

Breakwater Design - Profile

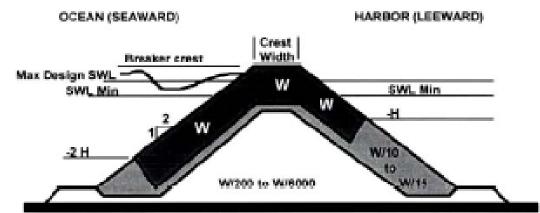


Figure 4-21. Sketch of common breakwater rubble mound structure where W is weight of armor unit.

Breakwater Design - Key Table

Armor Unit Number of Armor Unit Layers		Placement Technique	Trunk Structure		Head Structure		Slope
	'		КD		КD		1
			Breaking Wave	Non Breaking Wave	Breaking Wave	Non Breaking Wave	Cot a
Quarrystone (smooth rounded)	2	random	1.2	2.4	1.1	1.9	1.5 to 3.0
Quarrystone (rough angular	1	random	Non recommended	2.9	Not recommended	2.3	1.5 to 3.0
Quarrystone (rough angular	2	random	2.0	4.0	1.9 1.6 1.3	3.2 2.8 2.3	1.5 2.0 3.0
Quarrystone (graded angular)		random	2.2	2.5			
Tetrapod	2	random	7.0	8.0	5.0 4.5 3.5	6.0 5.5 4.0	1.5 2.0 3.0
Tribar	2	random	9.0	10.0	8.3 7.8 6.0	9.0 8.5 6.5	1.5 2.0 3.0
Tribar	1	uniform	12.0	15.0	7.5	9.5	1.5 to 3.0
Dolos Note: K _D values a	2 re for no dam	random	15.8 overtopping.	31.8	8.0	16.0	2.0

Breakwater Design - Example C7

- If a second breakwater were planned for Portugal Cove in water depths as shown below but for significant wave heights of only **3.0 m** (no breaking), what kind of armor unit would you use and why?
- If you were to design concrete Dolos for this application determine the weight of each unit if the specific weight of reinforced concrete is 3.3.

Example C7 - Solution

Part 1:

- Use the same kind of stone as the first breakwater.
- Likely available, nearby and cheaper

Part 2:

- Instructed to use concrete dolos of specific weight 3.3
- Told this is a non-breaking wave
- First step > Refer to table!

Example C7 - Solution

Table 4-5.	Suggested armor unit sta	bility coefficients (Kr	for rubble mound	structures (USACE 1984).
------------	--------------------------	-------------------------	------------------------------------	--------------------------

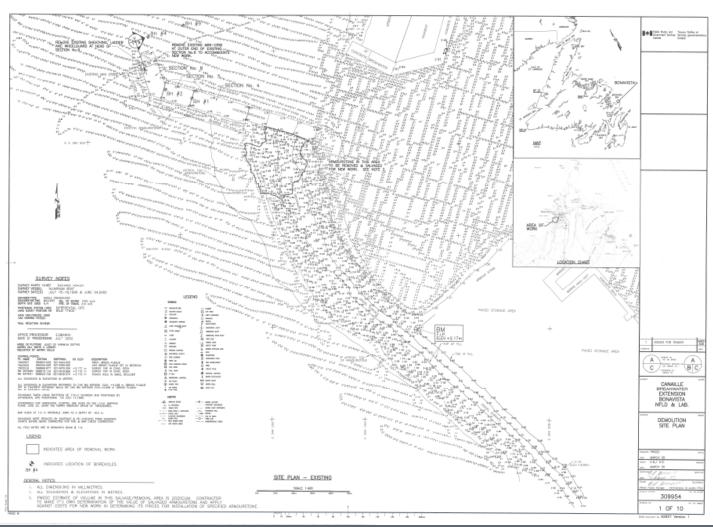
Armor Unit	Number of Armor Unit Layers	Placement Technique	Trunk Structure		Head Structure		Slope
			K ₁)	КD		
			Breaking Wave	Non Breaking Wave	Breaking Wave	Non Breaking Wave	Cot a
Quarrystone (smooth rounded)	2	random	1.2	2.4	1.1	1.9	1.5 to 3.0
Quarrystone (rough angular	1	random	Non recommended	2.9	Not recommended	2.3	1.5 to 3.0
Quarrystone (rough angular	2	random	2.0	4.0	1.9 1.6 1.3	3.2 2.8 2.3	1.5 2.0 3.0
Quarrystone (graded angular)		random	2.2	2.5			
Tetrapod	2	random	7.0	8.0	5.0 4.5 3.5	6.0 5.5 4.0	1.5 2.0 3.0
Tribar	2	random	9.0	10.0	8.3 7.8 6.0	9.0 8.5 6.5	1.5 2.0 3.0
Tribar	1	uniform	12.0	15.0	7.5	9.5	1.5 to 3.0
Dolos	2	random	15.8	31.8	8.0	16.0	2.0
Note: KD values are for no damage and minor overtopping.							

Dolo Information	Value
Number of units	2
K(d) Head	16
K(d) Trunk	31.8
Cot (alpha)	2.0

Example C7 - Solution

 Use the Hudson formula to determine the weight of the individual armor unit:

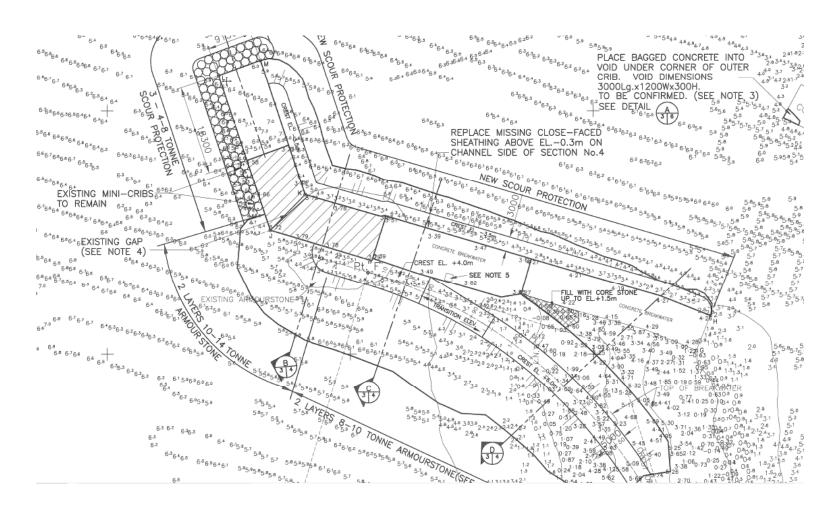
$$W = \frac{\gamma_a H^3}{K_D (S_a - 1)^3 cot \alpha}$$

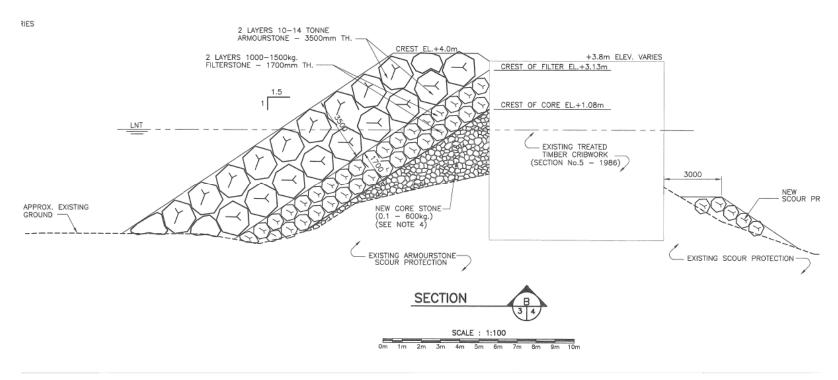

$$W = \frac{3.3 \times 1000 \frac{kg}{m^3} \times 9.81 \frac{m}{s^w} \times (3m)^3}{16(3.3 - 1)^3 \times 2}$$

$$W = \frac{32373 \frac{N}{m^3} \times 27 m^3}{389}$$

$$W = 2247 N = 229 kg$$

Number is small due to high stone shape coeff for dolos





- We know: slope, number of layers, weight, stone type
- Can we determine the design wave height?

$$S_a$$
 granite = 2.7

W = 14 tonne = 14 000 kg = 137 340 N

$$\cot \alpha = \frac{1}{\tan \alpha} = \frac{1.5}{1} = 1.5$$

Assuming rough angular quarry stone, 2 layers, and breaking waves:

$$K_D = 1.9$$

Therefore:

$$W = \frac{\gamma_a H^3}{K_D (S_a - 1)^3 cot \alpha}$$

$$137\ 340\ N = \frac{2.7 \times \frac{1000 kg}{m^3} \times 9.81 \frac{m}{s^2} \times H^3}{1.9(2.7 - 1)^3 \times 1.5}$$

 $H = 4.15 \, m$