Lecture Goals

- Students will be able to:
 - recognize types of shallow foundations,
 - examine the limits of foundation settlement,
 - estimate the ultimate bearing capacity of shallow foundations, and
 - estimate the influence of groundwater on the bearing capacity of shallow foundations.

Reading List

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Ultimate Soil-Bearing Capacity for Shallow Foundations</td>
</tr>
<tr>
<td>15.2</td>
<td>Terzaghi’s Ultimate Bearing Capacity Equation</td>
</tr>
<tr>
<td>15.3</td>
<td>Effect of Groundwater Table</td>
</tr>
<tr>
<td>15.4</td>
<td>Factor of Safety</td>
</tr>
<tr>
<td>15.5</td>
<td>General Bearing Capacity Equation</td>
</tr>
</tbody>
</table>
Shallow Foundations

- **Purpose**
 - Redistribute structural loads over an area

- **Type**
 - Strip footing
 - Pad footing
 - Combined footing
 - Raft or mat foundation

Foundation Settlement

- **Limits on uniform displacement**
 - Concern for buried infrastructure and utilities

- **Limits on non-uniform displacement**
 - Structural serviceability concerns

- **Typically Controls Design**
 - Total settlement
 - 25mm to 50mm
 - Differential settlement
 - $\Delta / \text{span length} = 1/500$ to $1/150$

Foundation Settlement Calculations

- **Cohesionless Soil**
 - Elastic deformation
 - Pore pressures can dissipate
 - SPT

- **Cohesive Soil**
 - Elastic deformation
 - Pore pressure, deformation at constant volume
 - Consolidation methods

- **Settlement Analysis**
 - One-dimensional
 - Three-dimensional
Bearing Capacity

- Limit State
 - Capacity and stability

- Failure Mechanisms
 - General
 - Dense sand, stiff clay
 - UU & CU conditions
 - Local
 - Transitional mode
 - Punching
 - Compressible soil
 - Loose sand, sensitive clay
 - CD conditions

Bearing Capacity – Terzaghi

- Considerations
 - Strip Footing
 - Infinite soil layer depth
 - Uniform soil strength properties
 - Extended Applications
 - Square footing
 - \(q_u = c N_c + q N_q + 0.4 \gamma B N \gamma \)
 - Circular footing
 - \(q_u = 1.3 c N_c + q N_q + 0.3 \gamma B N \gamma \)

Bearing Capacity Factors

- Smooth Base
 - Cohesion
 - \(N_c = \left(N_q - 1 \right) \cot \phi' \)
 - Surcharge
 - Exact
 - \(N_q = e^{s u r f a c e} \tan i \left(45 + \frac{\phi'}{2} \right) \)
 - Soil density
 - Vesic (1975)
 - \(N_q = 2 \left(N_q + 1 \right) \tan (\phi') \)
Bearing Capacity Factors

- Rough Base
 - Cohesion
 - Exact
 \[N_c = \left(N_q - 1 \right) \cot \phi' \]
 - Surcharge
 - Exact
 \[N_q = e^{1.5 \phi' - \phi' \tan \left(\frac{45 + \frac{\phi}{2}}{2} \right)} \]
 - Soil density
 Bowles (1968)
 \[N_y = 1.1 \left(N_q - 1 \right) \tan (1.3 \phi') \]

Bearing Capacity Factors

- General shear failure

General Bearing Capacity – Meyerhof's Factors

- Additional Considerations
 - Footing shape
 - Footing depth
 - Footing inclination
 \[q = \lambda \beta \lambda' \gamma' N_c + \lambda' \beta' \lambda'' N_q + \frac{1}{2} \beta' \lambda' \lambda'' N_y \]
Bearing Capacity – Undrained Conditions

- Terzaghi
 - $\phi' = 0^\circ$
 - $\tau = s_u$
 - $N_q = 0$
 - $N_c = 1$
 - $N_c = 5.70$

- Meyerhof
 - $\phi' = 0^\circ$
 - $\tau = s_u$
 - $N_q = 0$
 - $N_c = 1$
 - $N_c = 5.14$
 - $\lambda_{uu} = \lambda_{yd} = 1$

$q_u = c'N_c + qN_q + \frac{1}{2} \gamma B N_y$
$q_u = 5.70 s_u + q$

Factor of Safety – Bearing Capacity

- Gross Allowable Capacity
 - $FS = 2.5$ or 3.0

- Net Allowable Capacity

- Design Capacity

$q_{net} = q_u - q = q_u - \gamma D$

Design Considerations

- Unequal Surcharge
 - Use lesser value

- High Water Table
 - More complex loading

$q_u = c'N_c + qN_q + \frac{1}{2} \gamma B N_y$

Handy and Spangler (2007)
Design Considerations

- **Footing on a Slope**

- **Non-Uniform Soil Properties**
 - Strength variation with depth
 - Fissured clays
 - Layered soils

References