ENGI 8673 Subsea Pipeline Engineering

Lecture 01 – Course Introduction
Course Learning Objectives

• Students will be able to:
 • Develop an understanding of fundamental engineering principles for the design, construction and operation of offshore energy pipeline transportation systems.
 • Conduct stress and strain based design procedures, focused on mechanical integrity, using international codes and standards.
 • Conduct pipeline/soil interaction analysis with application to standard design practice and examination of special topics.
Goals – Engineering Knowledge

• Overview Pipeline Engineering
 • Introduction to Pipeline Systems
 • Route selection, engineering surveys and subsea geotechnical engineering
 • Pipeline thermal and hydraulic analysis; Flow assurance
 • Linepipe fabrication; Materials selection
 • On-bottom stability and vortex induced vibrations
 • Bottom roughness
 • Installation and shore approach
 • Intervention and repairs
Goals – Engineering Design Practice

• Mechanical Design
 • Codes and standards
 • Stress based and limit states design approaches
 • Pressure containment and thermal expansion
 • Combined loads – Load and displacement control
 • Collapse and propagation buckling
Goals – Engineering Design Practice

• Pipeline/Soil Interaction Analysis
 • Thermal expansion, settlement, terrain roughness, upheaval and lateral buckling
 • Analytical methods including closed-form and approximate solutions
 • Structural and continuum finite element methods
Goals – Computational Methods

• Use of common engineering tools for communications and reporting
 • Word, Excel, PowerPoint

• Use of specialized engineering tools for analysis and design
 • Matlab
 • Finite element methods (e.g. ABAQUS)
Course Information

- Syllabus, Lecture Notes and Information
 - www.engr.mun.ca/~spkenny/Courses
- Office Hours
 - Mon., Tues, & Thu. 9am – 1pm
- Contact Information
 - www.engr.mun.ca/~spkenny/Contact
Planned Course Outline

- **Introduction** [1 Lecture]
- **Pipeline Route Selection** [1 Lecture]
- **Flow Assurance** [1 Lecture]
- **Materials Selection** [3 Lectures]
- **Mechanical Design** [15 Lectures]
- **Pipeline/Soil Interaction** [5 Lectures]
- **Installation** [3 Lectures]
- **Intervention and Repair** [2 Lectures]
- **Special Topics** [3 Lectures]
Course Evaluation

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Notes</th>
<th>Due Date</th>
<th>Grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>• 4 staggered over term</td>
<td>• Feb. 9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Feb. 26</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mar. 16</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Apr. 2</td>
<td>5</td>
</tr>
<tr>
<td>Term Project</td>
<td>• Proposal</td>
<td>• Feb. 5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>• Interim Status Report</td>
<td>• Mar. 5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>• Final Report</td>
<td>• Apr. 6</td>
<td>20</td>
</tr>
<tr>
<td>Final Exam</td>
<td>• Open notes</td>
<td>• Date TBD</td>
<td>50</td>
</tr>
</tbody>
</table>
Course Perspective

• Lecture Notes
 • Complements available resources
 • Engage critical thinking and student learning
 • Taking additional notes recommended

• Educational and Professional Development
 • Facilitated by course material
 • Student ownership is fundamental
Resources

• Textbooks
Resources (cont.)

• Conferences
 • Offshore Technology Conference
 • International Society of Offshore and Polar Engineers
 • Offshore Mechanics and Arctic Engineering
 • International Pipeline Conference

• Journals
 • Offshore Mechanics and Arctic Engineering
 • Petroleum Technology
 • Pipeline Integrity
 • Pressure Vessel and Piping Technology
 • Transportation Engineering

• Available from QE II Library and CISTI Library
Resources (cont.)

- Industry Magazines
 - Oil and Gas Journal
 - Offshore
 - Offshore Engineer
 - http://www.offshore-engineer.com/
 - Pipeline and Gas Technology
 - http://www.pipelineandgastechnology.com/
 - World Pipelines
 - http://www.hydrocarbonengineering.com/Pipelines/WP_home.htm
Course Schedule

• Lectures
 • Day: Mon., Tue. & Thu.
 • Time: 0100-0150
 • Room: EN2050
Assignments

• Work Scope
 • 4 assignments
 • Available on course website
 • Due in class
 • Late assignments -50%

• Objectives
 • To advance critical thinking and problem solving skills
 • To demonstrate comprehension of course material by solving assigned problem sets
Term Project – Work Scope

• Work Scope
 • Desktop study
 • Topic of interest related to offshore pipeline systems
 • Topic and work scope must be approved by instructor

• Feedback and Learning
 • Proposal
 • Interim report
 • Final report
Term Project

• Objectives
 • Obtain improved technical knowledge and engineering skills on a topic of interest, within the course work scope, on offshore pipeline systems
 • Develop critical thinking skills
 • Synthesize and assess a topic of interest within current engineering practice
 • Not a simple compilation of literature
 • Not a graduate studies thesis
 • Demonstrate learning objectives have been achieved through submission of an engineering report