" DESIGN AND DEVELOPMENT OF A MARINE CURRENT ENERGY CONVERSION SYSTEM USING HYBRID VERTICAL AXIS TURBINE"

MD. JAHANGIR ALAM MASTER OF ENGINEERING FACULTY OF ENGINEERING AND APPLIED SCIENCE MEMORIAL UNIVERSITY OF NEWFOUNDLAND (MUN) ST.JOHN'S, NL, A1B3X5, CANADA.

Agenda

Adenda

Ocean Currents

- Marine Current Energy Conversion System
- Thesis Objective
- Prototype Design
- Flume Tank Test and Test Results
- Experimental Energy Conversion System
- Conclusions

Ocean Currents

Horizontal movement of the Ocean water known as Ocean

currents.

Mainly three types-

- I. Tidal Currents
- II. Wind driven Currents
- III. Gradient (Density) Currents

Estimated total power = 5,000 GW Power density may be up to 15kW/m²

Fig: Labrador Current

Tidal Currents

Ocean Currents

 Vertical rise and fall of the water known as Tides
 Due to the gravitational attraction of the moon and sun
 Tidal Cycle of 12.5 Hours

Fig: Tides (due to Gravitational Attraction)

North Atlantic current (Near St. John's)

Ocean Currents

Water Depth (m)	Average Water Flow (m/s)	
20	0.146	
45	0.132	
80	0.112	
Near Bottom	0.07	

Table: Ocean Current Speeds (for different depths) at different areas of St. John's, NL

Marine Current Energy Conversion System

MCECS

Figure: Marine Current Energy Conversion System (MCECS)

- Design and Development of a low cut-in speed turbine for SEAformatics pods.
- System testing in a deep sea condition.
- Design and Development of Signal Condition circuits for the generated power.
- Maximum Power Point Tracker development for the designed conversion system.

Turbines

Types of Turbine: (According to OREG)

Fig. I: Vertical Axis

Fig. II: Horizontal Axis

- I. Vertical Axis Turbines
- II. Horizontal Axis Turbines
- III. Reciprocating Hydrofoils

Fig. III: Reciprocating Hydrofoils

Commercial Application

Turbines

Fig: Vertical axis (Blue Energy)

** High cut-in speed ** Turbine Rotation

Fig: Horizontal axis (MCT Ltd.)

Fig: Reciprocating Hydrofoil (Engineering Business Ltd.)

Vertical Axis Turbines

Turbines

Vertical-axis turbines are a type of turbine where the main rotor shaft runs vertically.

Types:

- Savonius Type (Drag Type)
 Darrieus Type (Lift Type)
- I. Egg Beater TypeII. H-Type

Gorlov, Squirrel cage etc.

[Turbine rotation is irrespective to the direction of fluid flow]

(1) Savonius type

i. Egg Beater Type

і. Н-Туре

(2) Darrieus type

Turbines

Savonius Type:

- Adv.: High Starting Torque
- **Dis.:** Low Tip Speed Ratio (TSR ≈<1), Low Efficiency

Darrieus Type:

- Adv.: High TSR (>1), <u>High</u> Efficiency
- **Dis.:** Low start-up characteristics

TSR (λ) = (Blade Tip Speed/ Water Speed)= (ω R/V)

- Flexibility to meet specific design criteria
- Knowledge of conventional rotors
- Simple in structure
- Easy to build

Prototype Design

Possible Combinations

Prototype Design

Selected Prototype

Prototype Design

Fig: Hybrid Model (CAD View)

Fig: Hybrid Model (Final product)

Solidity Ratio: ((No. of Blades * Chord Length)/Rotor dia.)

Design Equations & Parameters

Mechanical Power Output of Hybrid Turbine,

$$P = 0.5 \times \rho \times V^3 \times \left(A_s C_{Ps} + (A_d - A_s) C_{Pd}\right)$$

Tip Speed Ratio (TSR),

$$\lambda = \frac{\omega R_d}{V}$$
 ---- (II)

Savonius Rotor				
Rotor Height (H _s)	400mm			
Nominal diameter of the				
paddles (d _i)	130mm			
Diameter of the shaft (a)	20mm			
Rotor diameter (D _s)	200mm			
Overlap ratio (β)	0.298			
Swept area (A _s)	0.08m ²			
Darrieus Rotor				
Airfoil Section	NACA 0015			
Number of Blades	4			
Solidity Ratio [3]	0.40			
Rotor diameter (D _d)	1m			
Rotor Height (H _d)	1m			
Swept area (A _d)	1m ²			
Chord length (C)	100mm			

Solidity Ratio: ((No. of Blades * Chord Length)/Rotor dia.)

Working Principle (Hydrodynamics)

Prototype Design

Flume Tank

Flume Tank Test

Fig: Flume Tank (MI)

Fig: Turbine With Frame

Test Setup

Flume Tank Test

Fig: Submerged Turbine

Fig: DAQ board and Data Collection Terminal

Test results

Savonius Test Results

Test Results

Fig: Two-Stage Savonius

Fig: Power (P) vs. Water Speed (V)

H-Darrieus Test Results

Test Results

Fig: Power (P) vs. Water Speed (V)

H-Darrieus Test Results

0.14

V $(-m \neq s)$ $\rightarrow 0.3$ $\rightarrow 0.4$ $\rightarrow 0.5$ $\rightarrow 0.6$

Maximum Cp = 0.1248 @ 0.6m/s, when, TSR = 2.67 Maximum TSR = 3.09 @0.4m/s, when Cp = 0.012 23

Fig: Power (P) vs. Water Speed (V) for Hybrid Turbine

Hybrid Test Results (P vs. ω)

Test Results

Fig: Power vs. Turbine Speed (ω) for Hybrid Turbine

Hybrid Test Results (C_p vs. λ)

Test Results

Fig: Power Coefficient vs. TSR (λ) for Hybrid Turbine

Maximum Cp = 0.1484 @ 0.6m/s, when, TSR = 2.6794 Maximum TSR = 3.1114 @0.5m/s, when Cp = 0.0539

Experimental Energy Conversion System

Experimental Energy Conversion System

Experimental Conversion System

Fig: Experimental Energy Conversion System (MPPT based)

Maximum Power Point Tracker (MPPT)

V

Experimental Conversion System

MPPT Control

Fig. Basic MPPT control blocks

Case	dP	dv	Action
0→1	<0	<0	+
2→0	<0	>0	-
3→0	>0	<0	-
0→4	>0	>0	+

Р

Fig. MPPT Actions

Fig. MPPT Actions (Graphical View of P & O)

MPP

MPPT Algorithm (Perturbation & Observation)

Detailed Circuit Diagram

- Low cost microcontroller based
- Less complexity
- Easily extendable
- Minimize the size due to less components

Laboratory Setup

Test Result (Boost Converter)

Experimental Conversion System

Fig: Boost Converter

Conclusions

Conclusions

- A simple, low cut-in speed, high TSR, lift type hybrid turbine has been designed.
- Designed turbine has been built, tested and analyzed in a real world situation.
- A low cost microcontroller based experimental energy conversion system has been built and tested.
- A MPPT control algorithm has been tested for the design conversion system.

Conclusions

- More water speed data should be collected at other areas of St.John's.
- A CFD (Computational Fluid Dynamics) analysis should be done before the actual design and test.
- To get a higher torque at a comparatively low TSR, cambered airfoil (for example, NACA 4415) can be used.
- A low speed DC PMG can be used to avoid gearbox and rectifier losses.
- More sophisticated MPPT algorithm and digital filtering can be

introduced in the control system.

Acknowledgements

Supervisor:

Dr. M. Tariq Iqbal

SEAformatics Group:

Dr. Vlastimil Masek

Dr. Michael Hinchey

Andrew Cook

Paul Bishop

Brian Pretty

Nahidul Islam Khan

Sanjida Moury

- *"Design and Development of Hybrid Vertical Axis Turbine"* presented at 22nd CCECE'09, St.John's, NL, Canada, 03-06 May, 2009, pp.1178-1183.
- "A Low Cut-in Speed Marine Current Turbine" submitted to Journal of Ocean Technology, 2009.

