Control of a Hybrid Energy System

Master of Engineering Candidate
Supervisors: Tariq Iqbal
Neil Bose
Outline

- Introduction
- Background
- Problem
- Design Methodology Research
- Design Overview
- Results
- Conclusions
- Recommendations
Introduction

- Effective way to combine multiple renewable energy sources
- What is a hybrid energy system?
 - Wind
 - Solar
 - Tidal
 - Micro-Hydro
 - Etc.
Introduction

Today's Hybrid System

UNSTABLE AC and/or DC Power …

Solar Panels

Wind Turbine

Grid Power

Requires STABLE AC Power

Cabin or Home or Boat Electrical Panel

Net Metering

(c) 2007 WES Power Technology Inc.
Introduction

- Small wind less than 10kW
 - My research deals with micro small wind up to 1500 watts and 1000 watts of solar
 - Most common for cabins, boats, peak shaving systems in residential locations, and total power production in developing nations
Background

- Increasing demand for alternative power
 - Energy shortage
 - Power distribution problems
 - Kyoto Protocol
 - Rising cost of fossil fuel
 - Incentives
 - Green Movement
Background

Current solutions

- Controllers that perform one function
- Controllers that can do both wind and solar
 - Can only combine small amount of solar
 - Not entirely reliable
 - Will only work with one brand of turbine
 - Typically wind companies have built in some solar control
 - Solar companies have no wind control
Problems

- Many technical issues with hybrid systems
 - High variability in resource, e.g. wind, sun
 - Many components required
 - “Hybrid systems have a 65% or more failure rate, with failures due to components failing, poor maintenance,” (Vaughn C. Nelson, 2002)
 - Lack of monitoring of system
 - History logging
 - Remote communications
Design Methodology

- Goals to achieve
 - Reliability
 - Efficiency
 - Integration
 - Component number
 - Flexibility
 - Functionality
 - Convenience
Design Methodology
Design Methodology

- System design overview
- Design of each system block
- Implementation
- Testing
- Integration
- System testing
Design

- ARCS (Autonomous Renewable Control System)
Design - LDC

- Load Diversion Control
 - Charge lead acid batteries
 - Keep wind turbine under control
 - Load at all times
 - Integrate solar energy
Design – AC Rectifier

- Three phase full bridge rectifier
Design - Motherboard

- Data acquisition
- Storage
- User interaction
- Solar control
- LDC interaction
Design - Motherboard

(c) 2007 WES Power Technology Inc.
Design - Motherboard
Design – Sensor Pack

- Measures current of all components of system
Design - Safety

- Safety systems are critical for all electrical systems
 - Breakers for over current protection
 - Circuitry for voltage protection
Design - Case
Design – Solar Algorithm

- System Status
 - Both Solar and Wind?
 - Yes
 - Is Solar Connected?
 - Yes
 - Is voltage >95% battery capacity AND wind current >0?
 - No
 - Reconnect Solar
 - Yes
 - Disconnect Solar
 - No
 - Is voltage <90% battery capacity OR wind current stable at 0 amps?
 - No
 - Reconnect Solar
 - Yes
 - Disconnect Solar
 - No

(c) 2007 WES Power Technology Inc.
Design - Software

- Control algorithms
- User interaction
- Graphical user interface for unit and PC
- Firmware/Software
Test System

- Southwest Windpower - Whisper 200
- Evergreen Solar – two 110 watt panels
- Xantrax – SW5548 inverter
- Nautilus lead acid batteries
Results

- **Average expected monthly production**

<table>
<thead>
<tr>
<th>Component</th>
<th>Production (kWh/yr)</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV array</td>
<td>328</td>
<td>13%</td>
</tr>
<tr>
<td>Wind turbine</td>
<td>2,266</td>
<td>87%</td>
</tr>
<tr>
<td>Total</td>
<td>2,594</td>
<td>100%</td>
</tr>
</tbody>
</table>
Results

Wind Speed

(c) 2007 WES Power Technology Inc.
Results

Wind Power (Raw Data)

(c) 2007 WES Power Technology Inc.
Results

Power and Wind December 2006

(c) 2007 WES Power Technology Inc.
Results

- Power Curve Measured vs. factory
Results

- Solar Data
Results

- Wind Power and Battery Power
Results

- Track power production, cost savings, GHG emission savings
Conclusions

- Effectively combined wind and solar
- Increased power curve of wind turbine
- Allowed significant addition of solar power
- Increase reliability
- Tracked history and made data portable
- Increase in safety and usability
Conclusions
Recommendations

- Interaction with the grid
- Different turbines and solar arrays
- Multiple control schemes
Many thanks to:

Dr. Neil Bose, Tariq Iqbal, Philip Crowley, David Green, MUN, WES Power Technology Inc., and NRC

Thank you

Questions/Discussion