NATURAL GAS FUEL CELL BASED POWER SYSTEM FOR MUN ENGINEERING BUILDING

Mahmuda Ahmed Tanni Graduate Student

0

Faculty of Engineering and Applied Science Memorial University of Newfoundland, Canada Email: mat078@mun.ca

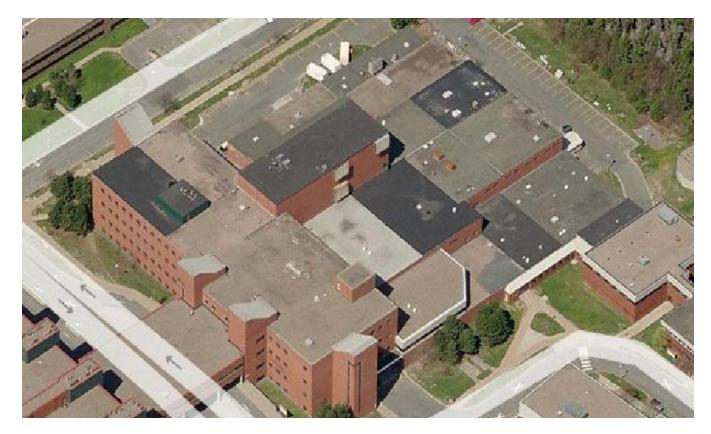
UNIVERSIT

OUTLINE

- Objectives
- Introduction
 - **BEopt Model**
- HOT-2000 Model
- Proposed Building Improvements
- 440 kW Fuel Cell Based Power System
- Modeling and simulation of the fuel cell system
- Conclusions

OBJECTIVES

- To analyze MUN engineering building energy consumption
- To develop the existing engineering building model in BEopt software which shows the actual energy consumption
- To develop the existing engineering building in HOT-2000 software for validation of the BEOPT model
- To propose an improved model of the existing design in BEopt with a list of recommendations which will lead to a lower energy consumption
- To model and propose a natural gas fuel cell based power system for the improved design of MUN engineering building
- To develop a dynamic model and propose a control system for the natural gas based fuel cell system



INTRODUCTION

MUN Engineering building is a four-storey building with a gross floor area of 25474.3 m^2

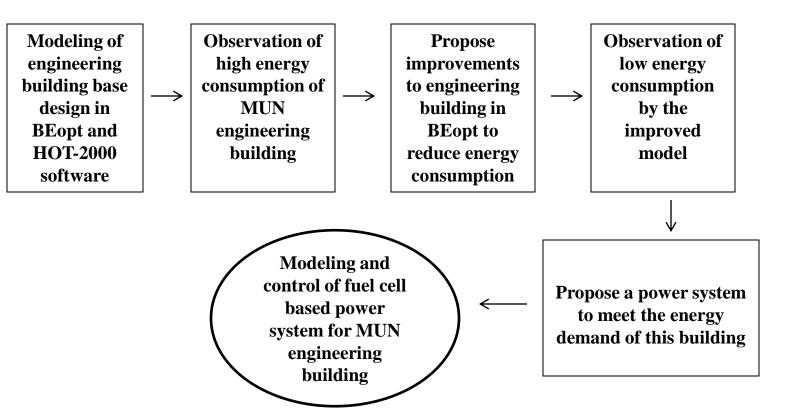
It is facing at southeast direction

•

MEMORIAL UNIVERSITY

INTRODUCTION - CONT

- This engineering building annually requires about 197.9412 kWh/m² energy for heating and hot water [data provided by the Facilities Management Department]
- It also requires annually about 190.7 kWh/m² electricity for lighting and equipment [data provided by the Facilities Management Department]
- Current level of energy consumption in the Engineering building is very high. How it could be reduced?


INTRODUCTION - CONT

- Total energy consumption in the Engineering Building (~388 kWh/m²/year) is about 4 times more than a typical house in St. John's
- This high energy demand can be reduced by some building improvements and its CO₂ emissions could be reduced by switching to a local natural gas based fuel cell power system
- Modeling, sizing and control mechanism of the fuel cell based power system is investigated
- Proposed fuel cell based power system will provide electricity as well as heat for the building

INTRODUCTION - CONT

Steps of work done in a block diagram

BEOPT MODEL

- Firstly engineering building is modeled in BEopt (Building Energy Optimization) 2.0.0.6 software
- BEopt is developed and updated by NREL <u>http://beopt.nrel.gov/</u>
- In BEopt, three types of analysis i.e. design, parametric and optimization can be done
- Only design analysis is done here
- In BEopt, there are 3 types of input i.e. geometry screen, options screen and site screen

a) Geometry Screen

- Each cell considered as 5 feet
- Each level is considered as 13 feet high
- But the third level is considered as 20 feet instead of 26 (13*2) feet because of the limitation of the software

Fig. 1 Geometry Screen of BEopt model

b) Options Screen

- The options screen consists of 13 options
- Each option has many sections
- If actual options are not found, new values are entered or closest options are selected

.	2 Option	Azimuth [degrees]
Building	1) North	180.0
- Operation	2) NNE	202.5
]- Walls - Ceilings/Roofs	3) Northeast	225.0
- Foundation/Roors	4) ENE	247.5
- Thermal Mass	5) East	270.0
Windows & Doors	6) ESE	292.5
· Airflow	7) Southeast	315.0
Major Appliances	8) SSE	337.5
Lighting	9) South	0.0
Space Conditioning	10) SSW	22.5
Ju Water Heating The Power Generation	11) Southwest	45.0
	12) WSW	67.5
	13) West	90.0
	14) WNW	112.5
	15) Northwest	135.0
	16) NNW	157.5

Table 1: Building Option Screen

Name of the Option	Selected Option
Orientation	Azimuth - Southeast 315 ⁰
Neighbors	None

Table 2: Operation Option Screen

Name of the Option	Selected Option
Heating Set Point	71 F
Cooling Set Point	75 F
Humidity Set Point	45% RH
Miscellaneous Electric Loads	Gas/Electric-24148kWh/yr, All electric- 25769kWh/yr
Miscellaneous Gas Loads	0
Miscellaneous Hot Water Loads	0
Natural Ventilation	None
Interior Shading	None

UNIVERS

Table 3: Walls Option Screen

Name of the Option	Selected Option
Wood Stud	None
Double Wood Stud	None
CMU	12-in Hollow
SIP	None
ICF	None
Other	None
Wall Sheathing	None
Exterior Finish	Brick, Medium/Dark

Table 4: Ceilings/Roofs Option Screen

Name of the Option	Selected Option
Finished Roof	R-47.5 SIPs
Roof Material	Asphalt Shingles, Dark

Table 5: Foundation/Floors Option Screen

Name of the Option	Selected Option
Slab	4 feet R10 Perimeter, R5 Gap
Carpet	0% Carpet

Table 6: Thermal Mass Option Screen

×

Name of the Option	Selected Option
Floor Mass	2 inch Gypsum Concrete
Exterior Wall Mass	Concrete
Partition Wall Mass	Concrete
Ceiling Mass	None

Table 7: Windows and Doors Option Screen

Name of the Option	Selected Option
Window Areas	15% F20 B40 L20 R20
Windows	Double-Pane, Medium-Gain Low E, Non-
	Metal Frame, Air Fill
Eaves	None
Overhangs	None

Table 8: Airflow Option Screen

Name of the Option	Selected Option
Air Leakage	Constant 0.1 ACH
Mechanical Ventilation	Supply

Table 9: Major Appliances Option Screen

Name of the Option	Selected Option
Refrigerator	None
Cooking Range	None
Dishwasher	None
Clothes Washer	None
Clothes Dryer	None

Table 10: Lighting Option Screen

Name of the Option	Selected Option
Lighting	100% Fluorescent, Hardwired & Plug in

Table 11: Space Conditioning Option Screen	
Name of the Option	Selected Option
Central Air Conditioner	None
Furnace	None
Boiler	Oil, Hot Water, Forced Draft, 85% AFUE
Electric Baseboard	None
Air Source Heat Pump	None
Ground Source Heat Pump	None
Ducts	None
Ceiling Fan	None
Dehumidifier	None

Table 11. C 0-4 C 1.4.

Table 12: Water Heating Option Screen

Name of the Option	Selected Option
Water Heater	Oil standard
Distribution	None
Solar Water Heating	None
SWH Azimuth	Southeast
SWH Tilt	0 degrees

Table 13: Power Generation Option Screen

Name of the Option	Selected Option
PV System	None
PV Azimuth	Southeast
PV Tilt	0 degrees

c) Site Screen

- This screen allows to choose the site i.e. location of the building
- Electricity cost is entered in this way, %Wh = 477505.65/4858059=0.0983

Building			Mortgage	
EPW Location CAN_NF_St	Johns.718010_CWEC.e 🔻	- 🔁 🛃	Down Payment	0.0 %
Terrain	City]	Mortgage Interest Rate	0.0 %
Economics Project Analysis Period Inflation Rate Discount Rate (Real) Material Cost Multiplier Labor Cost Multiplier	1 0.0 0.00 0.00) years) %] %	Mortgage Period Marginal Income Tax Rat Marginal Income Tax Rat Incentives Tax Credits & Rebates	
Electricty Natural Gas Oil	Propane			
Links D. J.			F F .	
Utility Rates	Manaiana 0.0002	C 4.14/h	Energy Factors	2.265
Output Specified	Marginal 0.0983	\$/kWh	Source/Site Ratio	3.365
 User Specified State Average 	Fixed 8.00	\$/month		3.365 1.670 lb/kWh
Output Specified			Source/Site Ratio	
 User Specified State Average National Average 	Fixed 8.00	\$/month	Source/Site Ratio	
 User Specified State Average National Average OpenEl Utility Rate 	Fixed 8.00 Average 0.0870	\$/month \$/kWh	Source/Site Ratio	
 User Specified State Average National Average OpenEl Utility Rate Fuel Escalation (Real) 	Fixed 8.00 Average 0.0870	\$/month \$/kWh]%/year	Source/Site Ratio	

Fig. 2 Site Screen in BEOPT for electricity option

Since natural gas and propane are not used in this building, cost for these options are kept as zero

Oil cost is entered in this way, \$659935.06/(17210/0.141)gal = \$5.4068/gal)

Building			Mortgage	
EPW Location CAN_NF_	_St.Johns.718010_CV	/EC.e 👻 🖀 🛂	Down Payment	0.0 %
Terrain	City	T	Mortgage Interest Rate	0.0 %
conomics			Mortgage Period	1 years
Project Analysis Period	ſ	1 years	Marginal Income Tax Rate, Fe	
Inflation Rate		0.0 %	Marginal Income Tax Rate, S	tate 0.0 %
Discount Rate (Real)		0.0 %		
Material Cost Multiplier		0.00	Incentives	
Labor Cost Multiplier		0.00		/hole-House Z PV
User Specified	Marginal	5.4068 \$/gal	Source/Site Ratio	1.158
Utility Rates			Energy Factors	
 State Average 	Marginar	and an going an	Carbon Factor	26.900 lb/gal
National Average				is, gui
Fuel Escalation (Real)		0.00 %/year		

Fig. 3 Site Screen in BEOPT for oil option

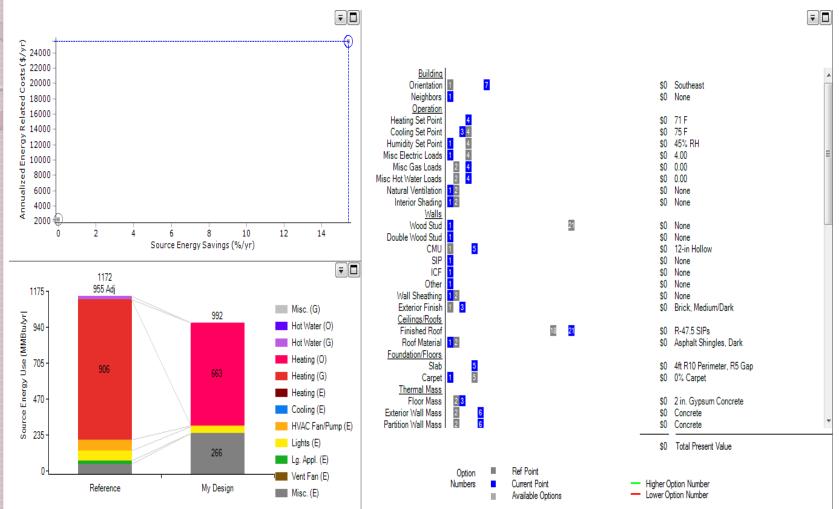
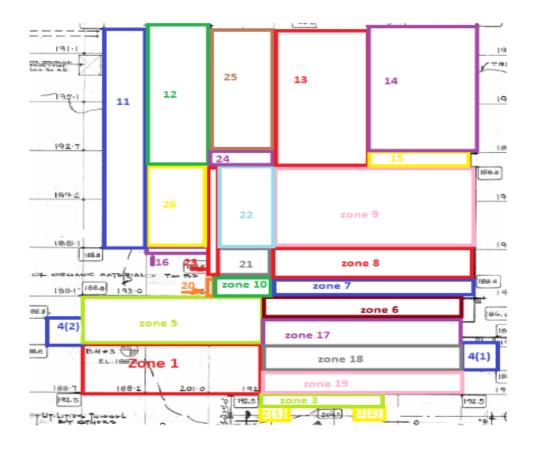
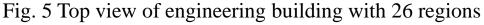


Fig. 4 Total Output Screen for actual model

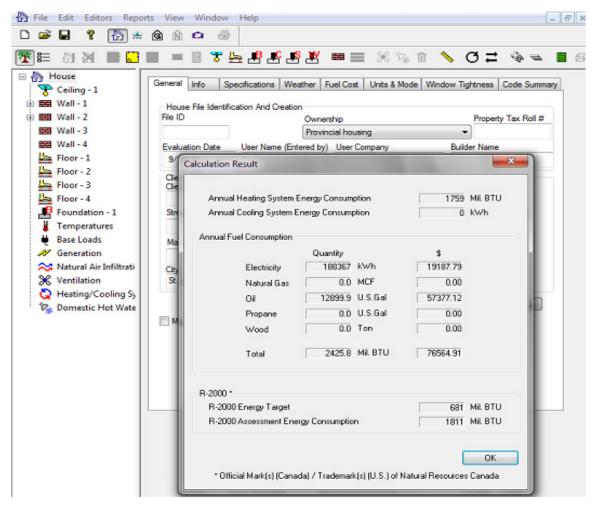
- A smaller size scaled building is simulated in BEopt
- The outputs have to be scaled to correlate with logged data by scaling factors
- Annualized energy related cost \$25,000 is 45 times less than the provided data (1137440.17/25000 = 45.5)
- The scaling factor 27 is obtained by calculation of building volume (3191057/118215=27)
- The scaling factor 33.7 is obtained by calculation of floor area (276044.3/8177=33.7)
- The scaling factor is 8 by calculation of surface floor area $(290913.6 \text{ ft}^2/37620 \text{ ft}^2=7.73)$




- Electricity consumption in the scaled simulated building is (992-663=325 MMBTU * 293.1) 95257.5 kWh/yr which is (4858059/95257.5) 50 times less than the provided data
- Oil consumption is 663 MMBTU/year which is (17210/663) 26 times less than the provided data
- But the total cost factor 45 is not close to the area and volume factors (because it includes both electricity and oil costs)
- Using the scaling factor BEopt was able to simulate the MUN Engineering Building

HOT-2000 MODEL

• HOT-2000 is developed by NRCan. Building is divided into 26 regions for simulation in HOT2000. Results are compared with the logged data.



HOT-2000 MODEL-CONT

As building is divided into 26 regions for simulation in HOT-2000. Results of all regions are added and compared with the logged data.

MEMORIA

UNIVERSITY

HOT MODEL - CONT

Table 14: Simulation Results of Models in HOT-2000

Zone No.	Electrical Consumption (kWh)	Heating Consumption (MMBTU)	Zone No.	Electrical Consumption (kWh)	Heating Consumption (MMBTU)
1	188367	1759	13	356039	1586
2(1)	10362	188	14	376261	1361
2(2)	18997	162	15	57158	349
3	55169	769	16	10691	141
4(1)	31547	397	17	170856	1234
4(2)	31547	397	18	170764	1214
5	377361	1424	19	141679	1087
6	146030	1081	20	5057	99
7	109135	763	21	62063	519
8	214933	1132	22	137353	1004
9	390530	1921	23	21667	476
10	37544	353	24	29299	274
11	263580	1268	25	255874	1244
12	243370	1026	26	130411	585
	То	tal		4043644	23813

MEMORIAL

UNIVERSITY

PROPOSED IMPROVED MODEL

How to reduce energy consumption in the building?

The improved model of engineering building is also done in BEopt software

Only the options screen is changed from the previous design

Name of the Option	Selected Option
Heating Set Point	68 F
Cooling Set Point	80 F
Humidity Set Point	45% RH
Miscellaneous Electric Loads	Gas/Electric-24148kWh/yr, All electric- 25769kWh/yr
Miscellaneous Gas Loads	0
Miscellaneous Hot Water Loads	0
Natural Ventilation	None
Interior Shading	None

Table 15: Operation Option Screen

PROPOSED IMPROVED MODEL - CONT

Table 16: Ceilings/Roofs Option Screen

Name of the Option	Selected Option
Finished Roof	R-49 Fiberglass, 2×12, R-25 XPS (R-value:73)
Roof Material	Metal, Dark

Table 17: Windows and Doors Option Screen

Name of the Option	Selected Option
Window Areas	12% F25 B25 L25 R25
Windows	Triple-Pane, High-Gain Low E, Insulated Frame, Air Fill
Eaves	None
Overhangs	None

Table 18: Airflow Option Screen

Name of the Option	Selected Option
Air Leakage	None
Mechanical Ventilation	HRV, 70%, 50% of ASHRAE 62.2

PROPOSED IMPROVED MODEL - CONT

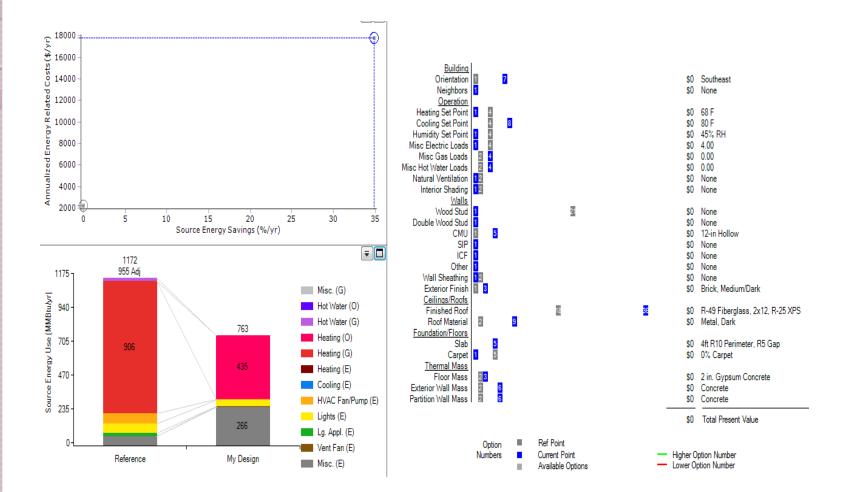


Fig. 6 Total Output Screen for improved model

PROPOSED IMPROVED MODEL - CONT

Simulation results indicate the following:

- With a better wall insulation, new windows, lower heating set point and a HRV system can improve the existing design
- The total cost can be reduced from \$25000 to \$17000
- The oil consumption could be reduced from 663 MMBTU to 435 MMBTU
- The electricity consumption is almost the same because it was already in a good range
- If the engineering building is modified as suggested in the improved BEopt model, it can be powered by a 440 kW natural gas based fuel cell system

SELECTED FUEL CELL SYSTEM

Introducing a new generation of fuel cell technology:

The PureCell® Model 400 Energy Solution.

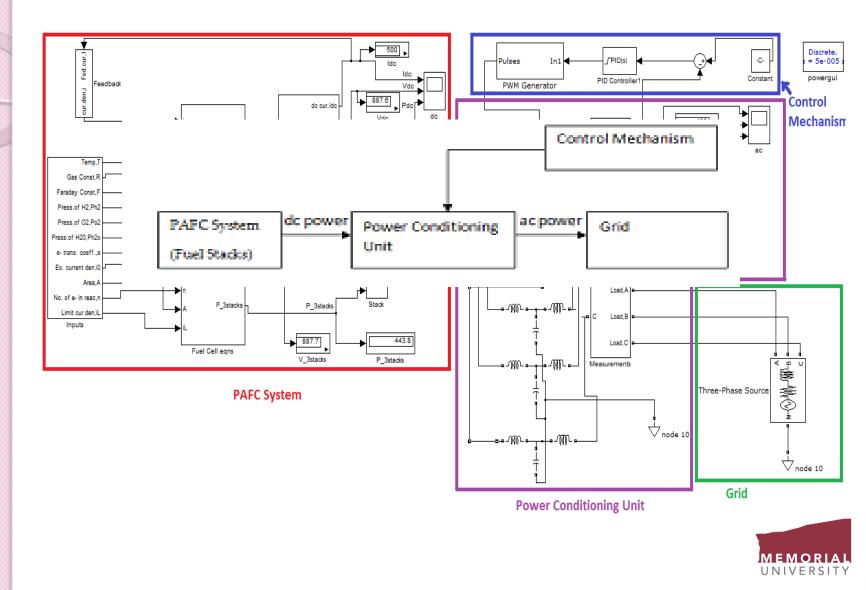
UTC Power is a world leader in developing and producing fuel cells for on-site power, transportation, space and defense applications. UTC Power, a United Technologies Corp. company, is the only fuel cell manufacturer with experience in all five major fuel cell technologies – alkaline, proton exchange membrane, solid oxide, molten carbonate and phosphoric acid. With more than 300 stationary fuel cell units installed, we are committed to providing customers with distributed energy solutions that increase energy productivity and reliability and reduce operational costs.

The PureCell* Model 400 system is the stationary fuel cell energy solution for the commercial marketplace. The ultra clean and quiet Model 400 uses proven phosphoric acid technology, which offers the optimum blend of system performance and durability. The Model 400 can provide up to 400 kW of assured electrical power, plus approximately 1.5 million Btu/hour (450 kW) of heat for combined heat and power applications. With an unmatched 10-year stack life and total energy efficiencies more than double those of traditional power sources, the Model 400 is an energy solution that will help save money, shield operations from interruption and secure environmentally sustainable business practices.

Performance Characteristics*

Power		Water	
lectris power lotage/frequency	400 kW/471 kVA 480VAC/60 Hz/3 phase	Consumption Discharge	None (up to 85°F (30°C) antitient) None (nonreal operating conditions)
Filiciency		Other	
Bectrical (LHV) Werall (LHV)	42% 90% with full best recovery	Noise	< 65 dBA at 33 ft (10m) with no heat recovery < 60 dBA at 33 ft (10m) with full heat recovery
search (crist)	constraint constraints	Operating life	20 vi
Fuel		Overhaul Interval	10 yr
lacoly consumption (HHV) niet pressure	Hetural (ps 3.61 MIVEbuhr (1.056 KW) 10 to 14 in. vater (2.5 to 3.5 kPa)	Antibient operating temperature	-201F In 1137F (-297C In 457C)
Heat Recovery		-	- U D
.ow grade up to (140°F supply)* ligh grade up to (250°F supply)*	0.96 MWBbu'hr (281 KW) 0.99 MWBbu'hr (174 KW)	B T	r a T
Emissions**			
405	0.02 (b/WWb (0.009 kg/W/h)		
00 00,	0.02 lb/With (0.009 kg/WWI) 1.050 lb/WWh (477 kg/WWh) with no heat receivery		PureCell
-u1	487 Ib/MWb (221 kg/MWb) with full heat receivery		
\$0a	Negligible		enerav
Particulate matter	Negligible 0.02 Ib/With 83.009 kg/With	10	Reinvertes.

FUEL CELL BASED SYSTEM

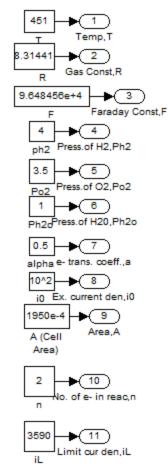
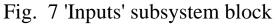

- If output of the fuel cell system is assumed as 400 kW, then 400*8765=3506000kWh=3506000/293.1 MMBTU =11961.8 MMBTU
- If the scaling factor considered as 30, then fuel cell need to supply a maximum of (11961.8/30=) 398 MMBTU electricity which is higher than power required as indicated in the improved design (325 MMBTU)
- For heating, fuel cell can supply (0.96+0.59=1.55 MMBTU/hr =>(1.55/30) MMBTU/h =>0.0517*8765 MMBTU/yr maximum or 452.86 MMBTU which is also higher than 435 MMBTU (consumed heat by the improved design)
- Currently, NL off-shore natural gas is not used
- We get oil for our use (MUN heating) from Middle-east

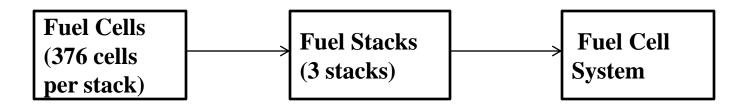
440 KW FUEL CELL BASED POWER SYSTEM

- Fuel cell converts chemical energy into electrical energy
- Five major types of fuel cells such as AFC, PAFC, MCFC, SOFC and PEMFC
- Fuel cells are connected in series in a fuel stack
- The 440 kW fuel cell based power system is modeled in Matlab/Simulink software with its Power System Blocksets
- This model is based on empirical equations
- Four sections of the system are PAFC system, PCU, grid and control mechanism

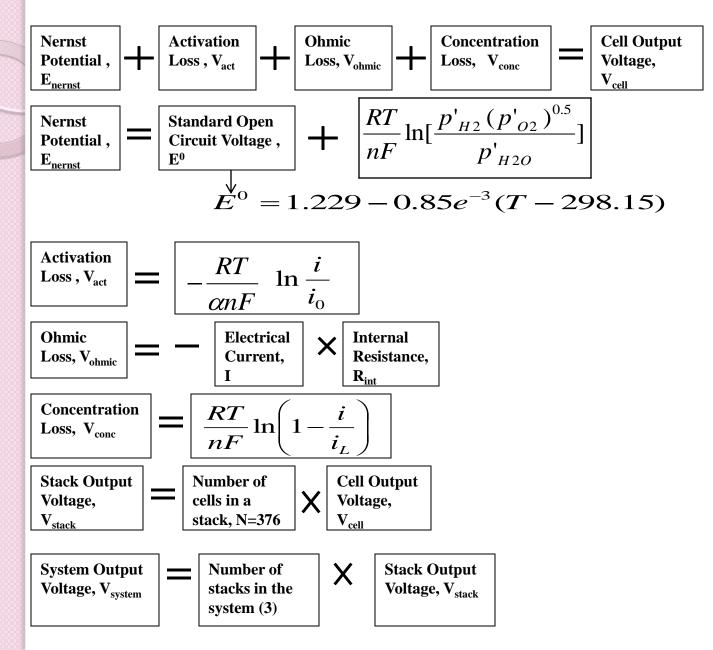
440 KW FUEL CELL BASED POWER SYSTEM - CONT A. PAFC System

PAFC system section consists of 'inputs', 'fuel cell equations' and 'connection of simulink blocks to power blocks' subsystem blocks


Table 19: Input Parameter Values of the Proposed Model

Parameter Name	Parameter Value
Temperature, T	451 K
Gas Constant, R	8.31441 J mol ⁻¹ K ⁻¹
Faraday Constant, F	96484.56 C mol ⁻¹
Partial pressure of hydrogen, pm	4 atm
Partial pressure of oxygen, po2	3.5 atm
Partial pressure of vapor, phoo	1 atm
Electron transfer coefficient, α	0.5
Exchange current density, io	10 ² A m ⁻²
Cell area, A	0.1950 m ²
Number of electrons participating in the	2
reaction, n	
Limiting current density, <i>i</i> L	3590 A m-2



- Fuel Cell (FC) equations subsystem block contains all equations which indicates the mathematical modeling of FC
- The overview of this mathematical modeling can be observed in the following block diagram:

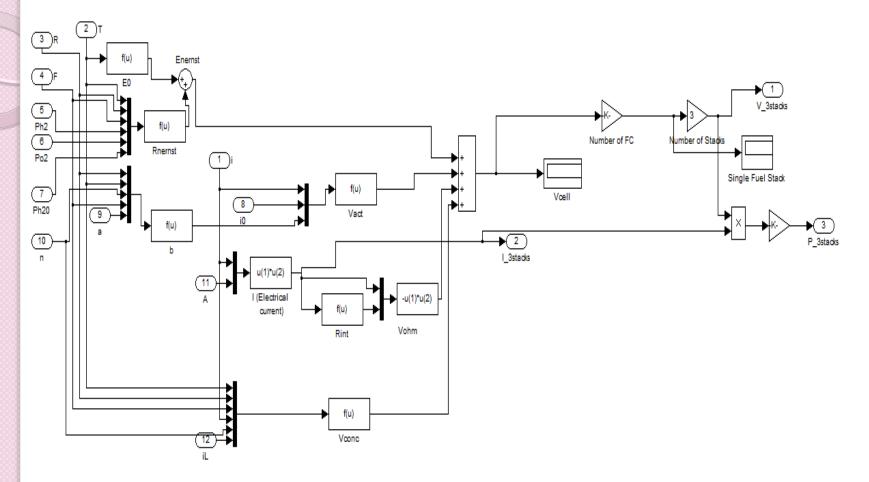
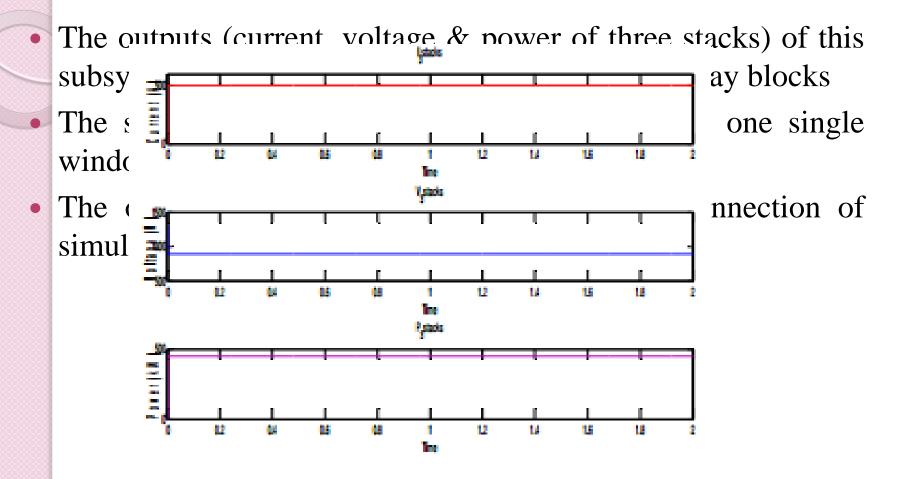



Fig. 8 'Fuel Cell equations' subsystem block

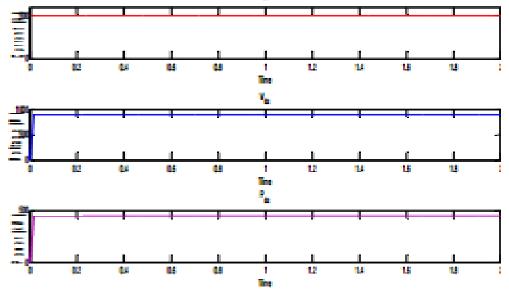


Fig. 9 Connection of simulink blocks to power blocks subsystem block

- Fig. 9 connection between two sections i.e. red colored 'PAFC System' and purple colored 'Power Conditioning Unit'.
- The dc current from 'Connection of simulink blocks to power blocks' subsystem block to the 'Feedback' subsystem block

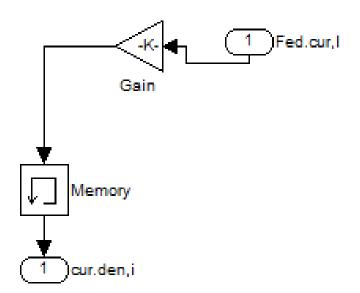
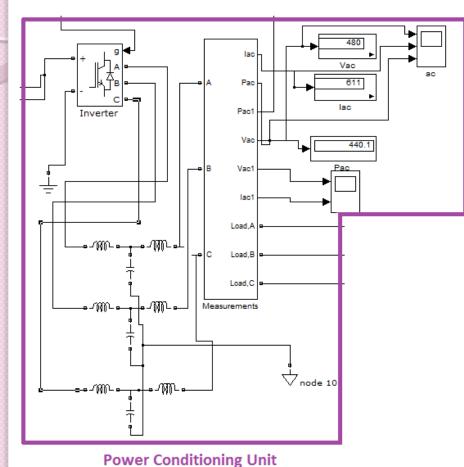
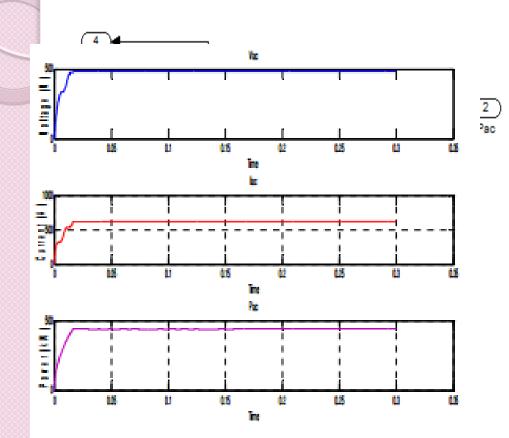
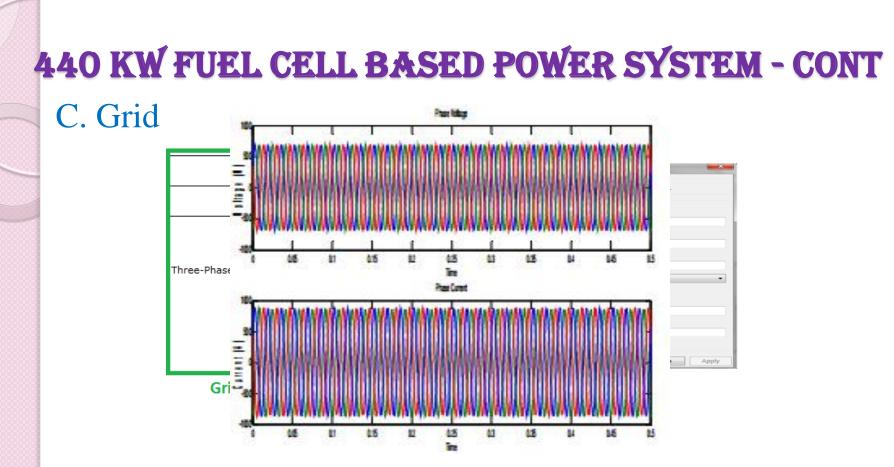



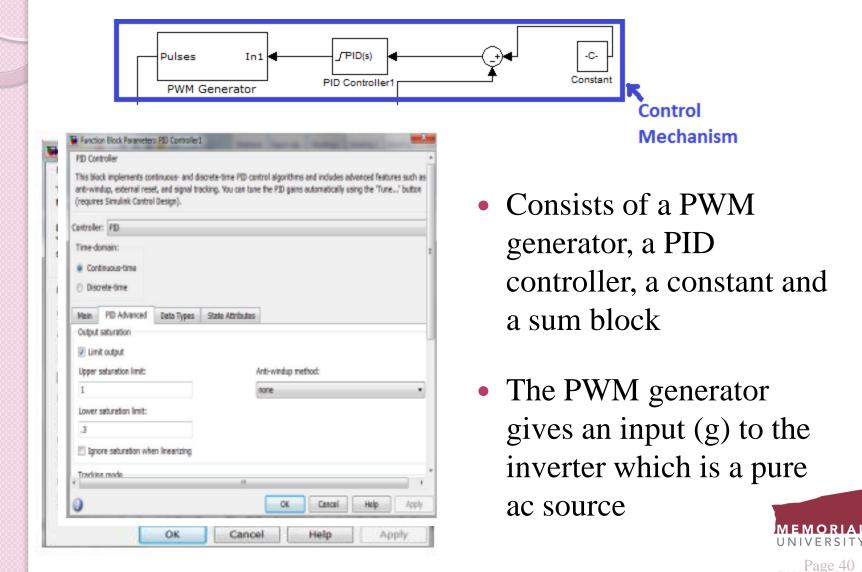
Fig. 10 'Feedback' subsystem block

- The feedback current (I) is converted into current density (i) through a gain block
- The memory block stores the initial condition


440 KW FUEL CELL BASED POWER SYSTEM - CONT B. Power Conditioning Unit (PCU)

 Contains an inverter, three LCL filters and a measurement subsystem block


• The inverter is Insulated Gate Bipolar Transistor (IGBT) type


- The outputs of this PCU section are Iac, Vac& Pac
- These values can be measured through display blocks and curves can be observed through the 'ac' scope block

- 'node 10' neutral indicates the same neutral of PCU section
- This type of neutral is a floating type neutral without drawing the connection line between two points

D. Control Mechanism

CONCLUSIONS

- Here energy analysis of MUN engineering (commercial) building is done in BEopt and HOT-2000 software
- The impact of scaling factors is observed through a relation between simulated data and the logged data
- A number of improvements to the engineering building are proposed
- An improved model is proposed which shows lower energy consumption
- The limitations of the existing design and a list of recommendations are presented
- A model of 440 kW fuel cell based power system is developed for the improved MUN engineering building
- Power electronics system for the fuel cell is modelled and simulated
- A controller for the fuel cell is proposed and simulated

Publications

Journal Publication:

- Mahmuda Ahmed Tanni, Md Arifujjaman and M. Tariq Iqbal, "Dynamic Modeling of a Phosphoric Acid Fuel Cell (PAFC) and its Power Conditioning System", Journal of Clean Energy Technologies (JOCET), vol 1, no. 3, pp. 178-183, ISSN: 1793-821X, July 2013.
- M. A. Tanni, M. T. Iqbal, "Modeling and Control of a Grid Connected PAFC System", accepted to International Journal of Energy Science (IJES).

Conference Publication:

- M. A. Tanni, M. T. Iqbal, "Modeling and Simulation of MUN Engineering Building in BEopt and HOT-2000 softwares", Newfoundland Electrical and Computer Engineering Conference (NECEC), Canada, November 2013.
- Mahmuda Ahmed Tanni, Md Arifujjaman and M. Tariq Iqbal, "Dynamic Modeling of a Phosphoric Acid Fuel Cell (PAFC) and its Power Conditioning System", International Conference on Future Environment and Energy (ICFEE), Rome, Italy, February 2013.
- Mahmuda Ahmed Tanni, Md. Arifujjaman and M. Tariq Iqbal, "Simulink Modeling of a Phosphoric Acid Fuel Cell System", Newfoundland Electrical and Computer Engineering Conference (NECEC), Canada, November 2012.

ACKNOWLEDGMENT

- Special thanks Dr. Tariq Iqbal for his great supervision
- Thanks to Facilities Management Department for their support and building data
- Grateful to UTC Power for their financial support

•

Thankful to Memorial University for all kinds of help

Thank you all... Any Question?

