
Assignment 0 – 2012

Engi-6892. Theodore S. Norvell

Solution, 2012

Parts (a) and (b) are an exercise in carefully explaining algorithms. Use pseudocode and
clear English as appropriate. You can look in the text book for examples of pseudo code or at a
document on my notation that I will post. You will by no means be marked on the efficiency of
your algorithms, however you should make an effort to make your answer to part (b) more efficient
than your answer to part (a).

(a) Design an algorithm to solve the following problem. Describe the algorithm as clearly and
carefully as you can.

Problem: Unrestricted Jigsaw
Input: A set of n2 square pieces p0, p1, · · · , pn2−1. Each piece is coloured with four colours:
pi.north, pi.west, pi.south, pi.east.

Output: An arrangement of the pieces into an n by n grid so that:

• if two pieces are horizontally adjacent, the one to the left has a east colour equal to the west
colour of the one on the right; and

• if two pieces are vertically adjacent, the one above has a south colour equal to the north
colour of the one below;

If no such arrangement is possible, a message to that effect.

An example input would be the following set of pieces.0

Solution

The following solution uses backtracking.
Call the procedure search (see Fig. 0) passing in the set of all n2 pieces, a grid variable that

hold a 2 D array of pieces, and a boolean variable. On returning from the procedure, if the boolean
variable is true, then the grid variable holds a solution. Otherwise there is no solution.

A piece p fits at position (i, j) of the grid iff

• either i = 0 or grid(i− 1, j).south = p.north and

• either j = 0 or grid(i, j − 1).east = p.west

0For no extra credit you can try putting these pieces into a 3 by 3 grid. I’ll post a solution.

0

proc search(var remainingPeices : Set [Piece], var grid : {0, ..n}×{0, ..n} → Piece, var success :
Bool)

if remainingPeices = ∅ then success := true
else

val i :=
(
n2 − |remainingPeices|

)
divn

val j :=
(
n2 − |remainingPeices|

)
modn

for p← remainingPeices do

if p fits at position (i, j) of the grid then
grid(i, j) := p
remainingPeices := remainingPeices − {p}
search(remainingPeices, grid , success)
remainingPeices := remainingPeices ∪ {p}
if success then return end if

end if

end for
success := false

end if

end proc

Figure 0: Procedure search

(b) Design an algorithm to solve the following problem. Describe the algorithm as clearly and
carefully as you can.

Problem: Restricted Jigsaw.
Input: A set of n2 square pieces p0, p1, · · · , pn2−1. Each piece is coloured with four colours:
pi.north, pi.west, pi.south, pi.east.

Precondition: You may assume that each colour is used at most twice as an east or west colour
and at most twice as a north or south colour.1 Furthermore there are n colours that appear
only once as a north colour and never as a south colour, n colours that appear only once as
a south colour and never as a north colour; n colours that appear once as an east colour and
never as a west colour, and n colours that appear once as a west colour and never as an east
colour.2

1Using set notation we can express the restriction by saying that for each colour c, |Ec ∪Wc| ≤ 2 and |Nc ∪ Sc|,
where

Ec =
{
i ∈

{
0, ..n2

}
| c = pi.east

}

Wc =
{
i ∈

{
0, ..n2

}
| c = pi.west

}

Nc =
{
i ∈

{
0, ..n2

}
| c = pi.north

}

Sc =
{
i ∈

{
0, ..n2

}
| c = pi.south

}
.

2Let’s call these colours, respectively, north edge colours, south edge colours, etc. This condition makes it easy

1

Output: Either an arrangement of the pieces into an n by n grid so that:

• if two pieces are horizontally adjacent, the one to the left has a east colour equal to the west
colour of the one on the right; and

• if two pieces are vertically adjacent, the one above has a south colour equal to the north
colour of the one below;

or, if no such arrangement is possible, a message to that effect.

An example input would be the following set of pieces.

(Note. Clearly your algorithm for part (a) will also work for part (b). Try to design an
algorithm for part (b) that takes advantage of the restriction on the input.)
Solution

From the preceding we can see that the colours can be classified as follows.

• There are exactly n colours that appear as north colours but not south colours. Call these
north edge colour.

• Likewise for the other directions, so we have exactly n south edge colours, exactly n east
edge colours, and exactly n west edge colour.

• Any piece with a north edge colour on its north side can only go on the north edge (i.e. row
0 of the grid).

• Likewise for the other colours.

• For a piece to fit in the north-west corner, it must have a north edge colour on its north
side and a west edge colour on its west side. Conversely a piece like that can only go in the
north-west corner (i.e. at (0, 0)). So unless there is exactly one such piece, the puzzle can
not be solved. Likewise for the other corners.

We can execute the following algorithm

0. Start with an empty n× n grid.

1. Determine which colours are north-edge colours. Likewise for west-edge colours.

2. North-west corner

(a) If there no piece that has a north-edge colour on its north and a west-edge colour on
its west, there is no solution, quit. Otherwise, place such a piece at location grid(0, 0)

3. Western edge

(a) For i from [1, ..n− 1]

to identify edge and corner pieces. The north west corner (if there is one) will have a north edge colour as its north
colour and a west edge colour as its west colour, and so on.

2

i. Find a piece with a north colour equal to grid(i−1, 0).south. If there is none there
is no solution, stop.

ii. If there is one, it must be unique. Place it at grid(i, 0).

4. The rest

(a) For i from [0, ..n]

i. For j from [1, ..n]

A. Find a piece that has its west colour equal to grid(i, j − 1).east. If there is
none, there is no solution, stop.

B. Otherwise, let p be the piece found, check that either i = 0 or i > 0 and
grid(i− 1, j).south = p.north. If not, there is no solution, stop.

C. Place p at grid(i, j).

If the algorithm runs to the end, there is a solution and it is in grid.

Briefly answer each of the following questions as best you can. Keep in mind that my point
in asking you the following questions is to get you thinking about the kinds of issues that this
course is about. At this point I have no expectation that you will come up with “correct” answers,
although that would be a happy outcome. My expectation is that you will give these questions
some careful thought and write something brief and cogent.

(c) We need quick algorithms. But how can we determine whether an algorithm is quick or
not without implementing it and running it on all possible inputs?3

SolutionI see two approaches to this problem

• Reason about it. Often the time taken by an algorithm does not depend on the exact
input, but only on its size. In this case we can work out how many times each operation
will be executed as a function of the input size. Multiplying each by the time required (on
a given computer) and adding we can get an accurate time for the algorithm as a function
of input size. If the time taken depends on more than just the input size, we can focus on
the worst case or on typical cases.

• Test it. Another approach is to implement the algorithm and test it on sample inputs that
are somehow typical. From the results of these tests, we may be able to extrapolate to larger
inputs than we have tried.

Both of these approaches are limited to a given computer (or finite set of computers). Luckily
there are no magic instructions: anything that can be done in a fixed amount of time one computer
will take a fixed amount of time on any other computer. For example the CDC-6600 (at the request
of the NSA) could compute the population count (number of 1 bits) of a 60 bit word with one
instruction. But on a machine that did not have a population count instruction, this operation
can be emulated in a fixed number of instructions. Thus information gathered using one general
purpose computer is generally applicable to other computers.

3And note that implementing these algorithms and running them on all possible inputs is hardly feasible, given
that there are an infinite number of possible inputs.

3

In order to abstract away from the particulars of the implementation and the computer it is
run on, we can look at what kind of a function the algorithm’s worst-case time function is. I.e.
how the time grows as the input size increases: linearly, quadratically, cubically, exponentially,
and so on.

In the second part of the course, we will look at algorithm complexity and in particular how
the complexity class of an algorithm’s time function can be found.

(d) Assuming each “basic operation”4 takes 1ns, estimate how long each of your algorithms
could take (in the worst case) for an input of 100 pieces. Is there something profoundly different
about the two algorithms?
Solution

For problem (a): The structure of the algorithm is essentially loops within loops within loops.
See Fig. 1.The depth of the loops is 100 (for 100 pieces). The loops iterate for up to 100, 99, 98,
times. But there are a couple of issues. First are the if commands; these mean that the loops
may not execute. Second is the fact that once success is set to true, all the loops stop. Ok, but,
we only need to consider the worst case and the worst case for this algorithm happens when there
are 99 all-blue pieces and one all-red pieces which is the last one to be considered. So the number
of times the algorithm tries to fit the red pieces into the last slot is at least 99 × 98 × · · · × 1.
So there are at least 99! operations being done. Ignoring all the other operations, this will take
around 99! = 9. 332 6× 10155ns, or

9. 332 6× 10155

109 × 60× 60× 24× 365.25× 1000
= 2. 957 3× 10136

millennia. (Of course this is an underestimate, as I ignored lots of options.)
[For interest sake, let’s consider the expected time for a more realistic puzzle where say 4

colours are roughly evenly distributed what happens. Well the chance that a piece fits is 1 for the
first piece, about 1/4 for other north and west edge pieces and about 1/16 for most pieces. Then
we might be looking more at some multiple of

100×
99

4
×

98

4
×

97

4
×

96

4
×

95

4
×

94

4
×

93

4
×

92

4
×

91

4

×
90

4
×

89

16
×

88

16
×

87

16
×

86

16
×

85

16
×

84

16
×

83

16
×

82

16
×

81

16
×

· · ·

×
10

4
×

9

16
×

8

16
×

7

16
×

6

16
×

5

16
×

4

16
×

3

16
×

2

16
×

1

16

operations. Which gives (some multiple of) 7. 87 × 1022 times the age of the universe. For 10
colours, with a roughly random distribution, the typical spot can only be filled by one piece. But
there are still 100 choices for the north-west corner and a 1/10 chance that any given piece will
fit on the north or west edges. Just considering these two edges gives a number that is (some
multiple of) several millennia.

100×
99!

80!× 1019
= 1. 304× 1020

4As part of your answer, you may want to clarify which operations you consider basic operations.

4

]
How about problem (b). Most of the work will be in step 4. Well here we have a triply nested

loops. If the innermost loop goes through every piece, then it checks 90 pieces the first time (in
the worst case), 89 the second and so on. This makes 4095 checks. If each check takes 10 basic
operations5 , that’s 41µs. There will be other operations, but none will take nearly as much time
as this inner loop.

(e) The programs have to be correct. How can we determine whether an algorithm is correct
for all possible inputs without implementing it and testing it on all possible inputs?6

As with trying to determine the time taken we can take two approaches

• Reason about it. When we devise an algorithm or write a computer program we usually
have some reason for writing down the steps we do. Experience is important, but usually we
are solving a problem that is not exactly like any problem we’ve solved before. Computer
engineers do not just memorize a bunch of algorithms in school and find themselves at a loss
when confronted by a problem they haven’t seen before. Rather they apply a combination
of creativity, experience, and reason to find a solution. If we apply reason, we should be
able to arrive at a correct solution. And yet bugs still occur. Thus it seems that applying
reason is not enough –or should not be enough– to convince others or even ourselves that
we haven’t made a mistake. If we can record our reasoning, then we can check it and others
–including computers– can check it too.

• Test it. As the question itself points out, testing has its limitations. We can typically not
test every possible input, and when the system is nondeterministic –as happens routinely
in concurrent systems– even testing every possible input may not be sufficient to show that
a program is correct. Despite these caveats, testing is extremely important. We should test
software on typical cases, extreme cases, and very large inputs. As one student suggested
last year, randomly generated inputs can be very good for detecting errors. These have the
advantage of being easy to generate. They have the disadvantage that, for such inputs, it
can be difficult to determine what the correct output is. But, short of exhaustive testing of
a deterministic system, testing is of limited use in ensuring correctness. As Edger Dijkstra
put it

Program testing can be used to show the presence of bugs, but never to show their absence!

Of course showing the presence of bugs is a valuable service. But if I’m going to put my life
in the hands of a piece of software, I’d like to have their absence shown.

The first part of the course looks at how we can record our reasoning and check it.

(f) Do your algorithms embody patterns that we might be able to apply to other problems?

5By basic operation I mean the sort of thing that can be done with one instruction in a typical computer, e.g.,
one fetch from memory, one store to memory, one comparison, one branch and so on.

6Again this strategy is not possible in principle, owing to the infinite number of possible inputs. Furthermore,
even if we give a finite selection of inputs, there is also the compounding problem of having to determine whether
the algorithm has output the correct answer in each case.

5

The first algorithm is a backtracking search. As the time analysis shows, this is a pattern that
can easily take a lot of time. However, for small instances, it can be an effective way to solve
problems. In some cases, such as the jigsaw puzzle, we actually don’t know of any methods that
are significantly better.

The second algorithm is an example of an iterative algorithm that builds a solution by building
onto a solution for a smaller problem. That is we find a solution for filling in the first k squares,
by first finding a solution for the first k− 1 squares. Such a solution is sometimes called a greedy
solution. When a greedy solution can be found, it is obviously better than a backtracking solution.

6

for p← remainingPeices do

if p fits at position (i, j) of the grid then
grid(i, j) := p
remainingPeices := remainingPeices − {p}

for p← remainingPeices do
if p fits at position (i, j) of the grid then

grid(i, j) := p
remainingPeices := remainingPeices − {p}
...

for p← remainingPeices do
if p fits at position (i, j) of the grid then

grid(i, j) := p
remainingPeices := remainingPeices − {p}
success := true
remainingPeices := remainingPeices ∪ {p}
if success then goto 99 end if

end if
end for
success := false
99:

...
remainingPeices := remainingPeices ∪ {p}
if success then goto 1 end if

end if
end for

success := false
1:

remainingPeices := remainingPeices ∪ {p}
if success then goto 0 end if

end if
end for
success := false

0:

Figure 1: The structure of the search

7

