
Assignment 2 – 2014

Theodore S. Norvell

6892 Due Oct 23 2014

Q0 [10]
(a) [5] Design the signature pre and post-conditions for a procedure that computes the set of

all n letter words that can be made from the items of the set where n is a natural number.

A Solution

proc words(n : N, S : Set 〈T 〉) : Set 〈Seq 〈T 〉〉

precondition true
postcondition result = {s ∈ Seq 〈T 〉 | s.length = n ∧ s {0, ..n} ⊆ S}

(b) [5] Design the procedure.

Some solutions: There are a couple of ways to do this.
One is Divide and Conquer. For this I will need a procedure that produces the set of all

sequences that extend a given prefix to length n. Recall that t is a prefix of s is there is a u such
that s = tˆu. I.e. I need a procedure

proc wordsWithPrefix(n : N, S : Set 〈T 〉 , t : Seq 〈T 〉) : Set 〈Seq 〈T 〉〉

precondition t.length ≤ n ∧ t {0, ..t.length} ⊆ S

postcondition result = {s ∈ Seq 〈T 〉 | s.length = n+ t.length ∧ s {0, ..n} ⊆ S ∧ t is a prefix of s}
if n = t.length then

return {t}

else

var R := ∅
for x ∈ S do R := R ∪ wordsWithPrefix(n, S, tˆ[x]) end for
return R

end if

end wordsWithPrefix

Then the original problem is solved by wordsWithPrefix (n, S, []). I.e. we can implement the
specification from part (a) with

proc words(n : N, S : Set 〈T 〉) : Set 〈Seq 〈T 〉〉

precondition true

0

postcondition result = {s ∈ Seq 〈T 〉 | s.length = n ∧ s {0, ..n} ⊆ S}
return wordsWithPrefix(n, S, [])

end words

One property of this solution is that the union is always of disjoint sets, so we can represent S

very efficiently, e.g., by a doubly linked list.
A second approach is bottom up. Find all words of length n−1 and then extend them to make

longer words. Here the unions might not be of disjoint sets:

proc words(n : N, S : Set 〈T 〉) : Set 〈Seq 〈T 〉〉

precondition true
postcondition result = {s ∈ Seq 〈T 〉 | s.length = n ∧ s {0, ..n} ⊆ S}
if n = 0 then

return {[]}

else

var P := words(n− 1, S)
var R := ∅
for t ∈ P

for x ∈ S

for i ∈ {0, ..n− 1} R := R ∪ {t[0, ..i]ˆ[x]ˆt[i, ..n− 1]} end for
end for

end for
return R

end if

end words

We could also do this nonrecursively

proc words(n : N, S : Set 〈T 〉) : Set 〈Seq 〈T 〉〉

precondition true
postcondition result = {s ∈ Seq 〈T 〉 | s.length = n ∧ s {0, ..n} ⊆ S}
var P := {[]}
var k := 0
// inv P contains all words of length k with elements from S and 0 ≤ k ≤ n

while k < n do

var R := ∅
for t ∈ P

for x ∈ S

for i ∈ {0, ..k} R := R ∪ {t[0, ..i]ˆ[x]ˆt[i, ..n− 1]} end for
end for

end for
P := R

k := k + 1

end while
return P

end words

1

Q1 [10] Given a sequence of one or more arrays that we wish to find the product of, say
ABCD, there are several ways the sequence could be parenthesized. In the example we have

(((AB)C)D)

((AB)(CD))

((A(BC))D)

(A((BC)D))

(A(B(CD)))

(a)[5] Design a procedure that, given a sequence of n characters, prints a list that contains of
all parenthesizations of that sequence. Include pre- and postconditions, even if they are not very
formal.

A solution:
As an informal specification

proc parens(s : Seq 〈Char〉) : Set 〈Seq 〈Char〉〉

precond s.length > 0
postcond result = the set of all parenthesizations of s

Given a sequence like “ABCDE”, we can consider all the places the final multiplication could
go, after the A, after the B, etc. For each of these, we can consider all the ways of parenthesizing
the items on either side of the final multiplication.

proc parens(s : Seq 〈Char〉) : Set 〈Seq 〈Char〉〉

precond s.length > 0
postcond result = the set of all parenthesizations of s

if s.length = 1 then

return {s}

else

// Try each way of splitting the sequence
var R := ∅
for k ∈ {1, ..s.length} do

var P := parens(s[0, ..k])
var Q := parens(s[k, ..s.length])
for p ∈ P, q ∈ Q do

R := R ∪ [‘(’] ˆpˆqˆ [‘)’]
end for

end for
return R

end if

end parens

Another solution: This solution finds all the ways to combine a sequence of partial solutions.

2

As an informal specification

proc parens(s : Seq 〈Seq 〈Char〉〉) : Set 〈Seq 〈Char〉〉

precond s.length > 0 and each item of s is a valid parenthesizations.
postcond result = the set of all ways of combining the items of s to make

a valid parenthesization

For example if we input a sequence

[“A”, “(BC)”, “((DE)F)”]

there are 2 ways to combine these, so the output is

{“(A((BC)((DE)F))”, “((A(BC))((DE)F))”}

If s has length 1, there is only one solution. When s is longer, we can combine any two
adjacent items we can then compute all ways of completing the task with a recursive call. There
are s.length− 1 adjacent pairs; we need to try each.

proc parens(s : Seq 〈Seq 〈Char〉〉) : Set 〈Seq 〈Char〉〉

precond s.length > 0 and each item of s is a valid parenthesizations.
postcond result = the set of all ways of combining the items of s to make

a valid parenthesization

if s.length = 1 then return {s(0)}
else

var R := ∅
for i ∈ {0, ..i− 1}

// Try combining items i and i+ 1
val t := s[0, ..i]
val u := [‘(’ˆs(i)ˆs(i+ 1)ˆ‘)’]
val v := s[i+ 1, ..s.length]
// Note that tˆuˆv is shorter by 1 than s.
R := R ∪ parens(tˆuˆv)

end for
return R

end if

end parens

This solution is considerably less efficient than the first, as it will find some solutions more
than once.

(b)[5] Suppose that besides a sequence of n characters (representing the names of matrices),
we are also given a list D of n+1 dimensions. The dimensions of matrix i are d(i) rows by d(i+1)
columns. Each parenthesization is then associated with a cost which is the sum of the costs of the
multiplications. The cost of multiplying a p by q matrix with a q by r matrix is p× q × r.

3

For example suppose we want to find the product ABCD where

Matrix Rows Columns

A 3 4
B 4 5
C 5 2
D 2 4

The costs of the 5 parenthesizations is

Parethesization cost

(((AB)C)D) 114
((A(BC))D) 160
((A(BC))D) 88
(A((BC)D)) 120
(A(B(CD))) 168

,

so the minimum cost is 88.
Design an algorithm to compute the cost of the least-cost parenthesization. Do not worry too

much about efficiency of your algorithm.

Some Solutions: I’ll keep the same structure as before, but this time instead of unioning to
get a set, I’ll compute the minimum

proc minCostMM (d : Seq 〈N〉) : N

precond d.length > 1
postcond result = the minimum cost of all parenthesizations
if d.length = 2 then

return 0

else

// Try each way of splitting the sequence
var r := ∅
for j ∈ {1, ..d.length− 1} do

var p := minCostMM (d[0, .., j])
var q := minCostMM (d[j, .., d.length− 1])
r := rmin (p+ q + (d(0)× d(j)× d(d.length− 1)))

end for
return r

end if

end minCostMM

Another way to do it is to leave d alone, but to give indices for the first and last dimensions
that are involved. This is marginally more efficient as there is no data structure manipulation
needed.

proc minCostMM (i, k : N, d : Seq 〈N〉) : N

precond d.length > 1 ∧ 0 ≤ i < k < d.length
postcond result = the minimum cost of computing the d(i) by d(k) matrix

4

from the k − i matrices represented by dimensions d(i), .., d(k)

if k − i = 1 then

return 0

else

// Try each way of splitting the sequence
var r := ∅
for j ∈ {i+ 1, .., k − 1} do

var p := minCostMM (i, j, d)
var q := minCostMM (j, k, d)
r := rmin (p+ q + (d(i)× d(j)× d(k)))

end for
return r

end if

end minCostMM

Now we have

proc minCostMM (d : Seq 〈N〉) : N

precond d.length > 1
postcond result = the minimum cost of all parenthesizations
return minCostMM (0, d.length− 1, d)

end minCostMM

Another solution. The final solution is based on the final solution presented for part (a). This
time there are 2 input lists. The first is a list c of the costs to produce each of the parenthesizations
represented by the s parameter in the last solution for part a. The second is a list d which holds
the dimensions of the parenthesizations represented by s. The s parameter isn’t actually needed,
so we leave it out. For example to compute the minimum cost of computing ABCD, where A is
3 by 4, B is 4 by 5, C is 5 by 2, and D is 2 by 4, we would call

minCostMM ([0, 0, 0, 0], [3, 4, 5, 2, 4])

The 0s here represent the cost of computing 4 individual inputs, which we assume is 0 in each
case, since they are single matrices and not products.

proc minCostMM (c : Seq 〈N〉 , d : Seq 〈N〉) : N

precond c.length > 0 ∧ d.length = c.length + 1
postcond result = the minimum cost of all parenthesizations assuming that c represents the

cost of a sequence of input parenthesizations and d represents the dimensions
if c.length = 1 then

return c(0)

else

var m :=∞
for i ∈ {0, ..i− 1}

// Try combining items i and i+ 1 of c
val t := c[0, ..i]
val u := [d(i)× d(i+ 1)× d(i+ 2) + c(i) + c(i+ 1)]
val v := c[i+ 1, ..c.length]

5

// Note that tˆuˆv is shorter by 1 than c.
// In recursing, we cut out the dimension shared by the matrices
// whose costs are represented by c(i) and c(i+ 1); i.e., we cut out d(i+ 1).
m := mminminCostMM (tˆuˆv, d[0, ..i+ 1]ˆd[i+ 2, ..d.length])

end for
return m

end if

end minCostMM

Q2 [5] An ordered tree is a directed tree such that each node is either a leaf or a branch.
Leaves have no children. Branches have a sequence of 0 or more children. For this question, nodes
are labelled with nonempty, finite strings consisting of lower-case letters.

Design a context-free grammar that describes the language of depth-first traversals of such
finite ordered trees. Three examples from the language are

fred

georgina()

henry(ingrid(john),kate,marty())

In these examples fred, john, and kate label leaf nodes; georgina and marty label branch nodes
with no children; ingrid labels a branch node with one child; and henry labels a branch node
with three children.

Be sure to describe the alphabet, the nonterminal set, the starting nonterminal, and the pro-
duction set of the grammar.

A Solution:

• Alphabet: A = {‘a’, ‘b’, .., ‘z’, ‘(’, ‘)’, ‘,’}

• Nonterminals: N = {tree,nonemptyList, list, letter,word}

• Start nonterminal: tree.

• Productions

tree → word

tree → word(list)

list → ε

list → nonemptyList

nonemptyList → tree

nonemptyList → nonemptyList,nonemptyList

word → letter

word → word word

letter → a

letter → b

...

letter → z

6

Bonus [5] Design a procedure that inspects a string and determines whether it is in the
language described in Q2.

Solution. With a few changes to the grammar, the technique of recursive descent can be used,
as outlined in slide set 10.5.

For the sake of variety, I’ll present a solution that relies on a completely different principle.
The kind of parser presented below is called a shift-reduce parser. For all but the simplest of
grammars, these are usually not coded by hand, but rather derived from grammars using tools.
Yacc and bison are two well known tools for turning grammars into shift-reduce parsers.

Suppose the input is in t. The parser uses variables

• s – the remaining input followed by a sentinel symbol $.

• α – a stack of alphabet and nonterminal symbols. The top of the stack will be to the right,
i.e., the bottom is at index 0.

We initialize the variables with
s := t$ α := ε

This establishes an invariant
αs

∗

=⇒ t$ (0)

There are two kinds of steps taken by the parser. Note that each preserves invariant (0).

• A shift step removes the first item from the input string and pushes it onto the stack.

shift = (α := αˆ[s(0)] s := s[1, ..s.length])

• A reduce step pops a sequence of symbols that equals the right-hand side of a production
and then pushes the left-hand side of the same production.

reduce(n→ β) = (α := α[0, ..α.length− β.length]ˆ[n])

The algorithm is to take shift and reduce steps according to the following table until no further
step is possible. If the table says two actions are applicable, the first one is taken

Top of stack is Next input is in Action
any letter x any reduce(letter→ x)
letter any reduce(word→ letter)
word word any reduce(word→ word word)
word {‘,’, ‘)’, $} reduce(tree→ word)
word(list) any reduce(tree→ word(list))
‘(’ {‘)’} reduce(list→ ε)
nonemptyList {‘)’} reduce(list→ nonemptyList)
tree {‘,’, ‘)’} reduce(nonemptyList→ tree)
nonemptyList,nonemptyList any reduce(nonemptyList→ nonemptyList,nonemptyList)
any any but $ shift

Upon stopping, if α = tree and s = $, then, by the invariant (0), tree$
∗

=⇒ t$ and so tree
∗

=⇒ t.

7

The table is designed so that the following invariant is also maintained

if tree
∗

=⇒ t then tree$
∗

=⇒ αs (1)

It is also designed so that. when no rule is applicable, either α = tree∧ s = $ or it is not true that
tree$

∗

=⇒ αs. So, provided that we have successfully maintained invariant (1), upon stopping,

unless α = tree∧ s = $ is true, tree$
∗

=⇒ αs is untrue and so by (1), tree
∗

=⇒ t will also be untrue
The complete algorithm is

s := t$
α := ε

while there is a rule in the table that applies

apply the first rule that applies

end while
f := α = tree ∧ s = $

8

