Assignment 3

Algorithms: Correctness and Complexity

2014 Draft Solution

QO [10]. We can model a data network as directed graph where switches, routers, computers
etc. are nodes and data links are edges. FEach edge is associated with a currently available
bandwidth. We wish to set up a virtual circuit from node s to node f that has a bandwidth
of 1Gbps. Le., we need a path from s to f whose weakest link (i.e. minimal bandwidth link)
is at least 1Gbps. In fact, to avoid creating bottle necks, we would like to find a route whose
weakest link is as large as possible. Design an algorithm that takes as input a simple directed
graph G = (V, E), two nodes s, f € V and a bandwidth function w : E — R™, and that prints out
every simple path from s to f and the weight of its weakest link.

My solution:

procedure paths(G,w, s, f)
pre: G is a graph, s and f are vertices in G
post: result is the set of all simple paths from s to f and have p as a prefix.
val P := paths(G, s, f,{s},[s])
for p — P do
// The minimum can be computed in the obvious way. I won’t go into details
val m 1= min;e (o, piength—13 wW((P(2),p(i 4 1)))
print p, m
end for
end paths
procedure paths(G, s, f,V,p)
pre: G is a graph, s and f are vertices in G, p is a path of vertices in G, which ends at s, V is
the set of vertices on p
post: result is the set of all simple paths that end with f and have p as a prefix.
if s = f then
return {p}
else
var P := ()
for each v such that G has an edge from s to v
if v ¢V then P:= PU paths(G,v, f,V U{v},p"[v]) end if
end for
return P
end if

end paths



Q1 [5] A tree over a set A is either

e Leaf()

e Branch(¢,a,u) where a is in A and t and u are trees over A.
The fringe of a tree is given by

e fringe(Leaf()) =[]

o fringe(Branch(¢,a,u)) = fringe(t) " [a] " fringe(u)

Write a procedure that takes a finite sequence s over A and prints all trees with s as its fringe.

My solution:

procedure allTrees(s)

if s =[] then return{Leaf()}
else
var P :={)
for ¢ — {0,..s.length}
val T := allTrees(s[0, ..i])
val U := allTrees(s[i + 1, ..s.length])
for t « T,u <« U do P := P U {Branch(t, s(i),u)} end for

end for
return P

end if
end allTrees

procedure toString(x)
if x = Leaf() then return “Leaf()”
else val Branch(¢,a,u) := x
return “Branch(” “toString(t)”“” "a”“) "toString(u)~“)”
end if
end

procedure printAllTrees(s)

val P := allTrees(s)
for t — T do print toString(t) end for

end




Q2 [5] The towers of Hanoi consists of 3 stacks of disks. There are n disks in total, each a
different size from the others; disk 0 is the smallest; disk 1 is larger than disk 0; and so on. A
legal configuration is one where each disk is on some stack and, on each stack, each disk is only
above larger disks. A legal move moves the top disk of one stack to the top of another stack
that is either empty or is topped by a larger disk. Design an algorithm that starts in any legal
configuration and moves all disks to one tower, using only legal moves.

Solution:

T’ll assume that the spindles are numbered 0, 1,and 2 and that the disks are numbered from
0 up to, but not including, n. I'll assume that the state of the game is represented by an ob-
ject game with accessor game.find(i), which returns the number of the spindle disk 4 is on, and
game.move(a, b) which moves the top disk of spindle a to spindle b. The precondition of move is
that the move is legal, i.e. that a is not empty and that either b is empty or the top-most disk on
b is larger than the top-most disk on a.(It follows that a must not equal b.). T'll assume that the
game object is only ever in legal configurations, i.e., that it represents only legal configurations.’

A solution is moveStack( n, a ), where a is the desired destination and moveStack is

proc moveStack( m, a )
// Move the m smallest disks to spindle a.
post: Disks numbered {0,..m} are all on spindle a. Le. Vk € {0,..m} - game.find(k) = a
if m > 0 then
val b := game.find(m — 1)
if b # a then
valc:=3—-a—b
// Move all disks smaller than disk m — 1 to ¢
moveStack( m — 1, ¢)
// Now the topmost disk on b must be disk m — 1
// and the topmost disk of a (if any) must be larger than m — 1,
// since every disk smaller than m — 1 is on c.
game.move(b, a)
end if
{Disk m — 1 is now on spindle a.}
moveStack( m — 1,a ) end if

end moveStack

LIf we want to be very formal, we could specify game’s class by using a (possibly abstract) field f that is a total
function from {0,..n} to {0,..3}. The precondition of find(z) is ¢ € {0, ..n} and the postcondition is result = f(z).
Suppose f~1 is the “inverse image” of f defined by

FHa) = {i] f()) = a}

The precondition of move(a,b} is a,b € {0,..3} and f~1(a) # 0 and min(f~1(a)) = min(f~*(a) U f~1(b)), while
its postcondition is f(min(fy ~(a))) = b and f(i) = fo(s) for all i # min(fo_l(a)).



Applying tail-call removal, we get.

proc moveStack( m, a )

// Move the m smallest disks to spindle a.

post: Disks numbered {0,..m} are all on spindle a. Le. Vk € {0,..m} - game.find(k) = a
var ¢ :=m
{0 <i < m and all disks with numbers in {7, ..m} are on spindle a.}
while 7 > 0 do

1:=1—1
val b := game.find(7)
if b # a then

valc:=3—a—b
// Move all disks smaller than disk i to ¢
moveStack( 7, ¢)
// Now the topmost disk on b must be disk ¢
// and the topmost disk of a (if any) must be larger,
// since every disk smaller than i is on c.
game.move(b, a)

end if

{Disk 7 is now on spindle a.}

end while
end moveStack




Q3 [10]. A priority queue is a data structure that holds a collection of values (say strings).
There is an operation to add a value and an operation to report and remove the smallest value
currently in the collection. Show that for any implementation of a priority queue which only
accesses its data by copying it and comparing it, the worst-case time complexity of at least one of
these operations is Q(logn).

Hint: You might want to use the result we will look at in Tuesday’s class that sorting (under
the same restrictions) requires Q(nlogn) time.

Solution: We proceed by proof by contradiction. I'll assume that the priority queue class has
two operations g.add(z) adds a value while g.removeSmallest() returns and removes the smallest
value (if there is one) and returns a special value, null, when the queue is empty. I'll also assume
that new queues are initially empty.

We'll assume that both these operations have worst case time complexity not in (i.e., better
than) Q(logn) where n is the number of items on the queue. Suppose the times for add and
removeSmallest are in fact in ©(f(n)) and O(g(n)) respectively, where f, g ¢ Q(logn).

Consider the following algorithm to sort a list s of m items.

PQueue ¢ := new PQueue() ;
for x < s do g.add(z) end for
Loop: var y := g.removeSmallest()

if y # null then

5= 5[y
goto Loop
end if

The first loop takes time in

O(f(0) +O(f(1) +---+6(f(m-1))

which will be in O(mf(m)). Similarly the second loop takes time ©(mg(m)). The total time will
be ©(m(f(m)+g(m))). Since f, g ¢ Q(logn), O(m(f(m)+g(m))) ¢ Q(mlogm). This contradicts
the result proved in class that the sort must take time in 2(mlogm).

Bonus [5] Suppose s is an array of n things and p is an array of n integers representing a
permutation (i.e. the value of p is a one-one onto function from {0,..n} to {0,..n}). Each item of
p indicates the rank of the corresponding item of s. Write a procedure to sort s according to rank.

procedure sortByRank( p : array (N) ;var s : array (T))

precondition p is a permutation of {0, ..p.Jength} and p.length = a.length
changes s
postcondition Vi € {0, ..p.length} - so(2) = s(po(i))

For example, if p and s are initially

s | bob | doug | alice | clara
1 3 0 2




then the final value s should be

s | alice [ bob | clara | doug ]

and it doesn’t matter what the final value of p is.
Implement this procedure in time ©(n), where n is the length of p. Do not use any temporary
arrays. Explain why the time is linear.

Solution:

Suppose s.length = p.length = n. The rank array p is a permutation of {0, ..n}. If we can turn
p into the identity permutation, [0,..n], while making corresponding changes to array s, then we’ll
be done. A formal way to look at it is this. Let f o g be the function h such that h(i) = f(g(7)).
And let p~1(4) be the inverse of p, i.e. p~1(i) gives that j such that p(j) = i. Note that if p gives
ranks for corresponding items in s, then s o p~! is simply the function that answers the question,
“Given a rank, which value in s has that rank?” Then sg o py ! (where sg and pg are the initial
values of s and p) is the final value required for s. Our postcondition is s = s o p; 12 If we can
maintain an invariant that sop™! = sp0p, ! and change p to be the identity permutation [0, ..n],
then we succeed because, once p = [0,..n], so does p~tand so s o p~! = s and by the invariant
8 =800pg L

To maintain the invariant, we need to make sure that any changes made to p are matched by
corresponding changes to s. In particular, if we swap two items of p and the same two items of s,
then the value of s o p~! doesn’t change. Here is an example. Note that, as corresponding items
of p and s are swapped, the composition s o p~' does not change.

bdeac dlble|alc alble|d|c abcde

:1.;?”..4‘,9:‘21 '3[1]4]0(2] 1]4[32]  Jo[1]2]a]4]
| A L |

swap 0 & 1 swap 0 &3 swap 2 &4

All that is left is to find a sequence of swaps that makes p into the identity function.

A fized-point of a function p is a value k such that p(k) = k. Suppose p is a permutation and &
and j are such that p(i) = j # ¢; thus ¢ is not a fixed-point. Note that j is also not a fixed-point,
since, if p(j) were equal to j, there would be two items of p with the same value. If we swap p()
with p(7), then after the swap p(j) will equal the old value of p(¢) which is j and so the new value
of p has j as a fixed-point. A swap of p(i) with p(j), where p(i) = j # 4, increases, by either 1 or
2, the number of fixed-points of p. If we only make this sort of swap, we can’t make more than n
swaps before there are n fixed-points, i.e., before p = [0,..n]. In the example above, each swap is
of this sort; i.e. p(i) and p(j) are swapped where 7 and j are such that p(i) = j # .

2The postcondition in the question says.so = s o pp. But this is equivalent to sg op~1 = s.



One way to sequence the swaps is to work from left to right. The code could look like the

following. In addition to sop™ = sgo Do ! the invariant says that the first 4 natural numbers are
fixed-points of p.

var ¢ :=0
{0<i<nAp[0,.i] =[0,..i] Asop~t =spopy'}
// Variant (n —1i) + [{k € {0,..n} | p(k) = k}|
while ¢ < n do

if p(¢7) =4 then

1:=1+1
else
val j := p(3)
(i) p(j)
p() | _ | p(d
a(7) a(j)
a(j) a(i)
end if
end while

Each iteration either increments ¢ or makes one swap. Obviously ¢ will be incremented n times.
As argued above, each swap increases the number of fixed-points of p, and so there can be no more
than n swaps. Thus the total number of iterations is no more than 2n (and no less than n). Each

iteration takes an amount of time independent of . The time is thus O(n) in the worst case (and
also the best case).




