
Assignment 3

Algorithms: Correctness and Complexity

Due Nov 6th, 2014 in class.

Q0 [10]. We can model a data network as directed graph where switches, routers, computers
etc. are nodes and data links are edges. Each edge is associated with a currently available
bandwidth. We wish to set up a virtual circuit from node s to node f that has a bandwidth
of 1Gbps. I.e., we need a path from s to f whose weakest link (i.e. minimal bandwidth link)
is at least 1Gbps. In fact, to avoid creating bottle necks, we would like to find a route whose
weakest link is as large as possible. Design an algorithm that takes as input a simple directed
graph G = (V,E), two nodes s, f ∈ V and a bandwidth function w : E → R

+, and that prints out
every simple path from s to f and the weight of its weakest link.
Q1 [5] A tree over a set A is either

• Leaf()

• Branch(t, a, u) where a is in A and t and u are trees over A.

The fringe of a tree is given by

• fringe(Leaf()) = [ ]

• fringe(Branch(t, a, u)) = fringe(t)ˆ[a]ˆfringe(u)

Write a procedure that takes a finite sequence s over A and prints all trees with s as its fringe.
Q2 [5] The towers of Hanoi consists of 3 stacks of disks. There are n disks in total, each a

different size from the others; disk 0 is the smallest; disk 1 is larger than disk 0; and so on. A
legal configuration is one where each disk is on some stack and, on each stack, each disk is only
above larger disks. A legal move moves the top disk of one stack to the top of another stack
that is either empty or is topped by a larger disk. Design an algorithm that starts in any legal
configuration and moves all disks to one tower, using only legal moves.

1



Q3 [10]. A priority queue is a data structure that holds a collection of values (say strings).
There is an operation to add a value and an operation to report and remove the smallest value
currently in the collection. Show that for any implementation of a priority queue which only
accesses its data by copying it and comparing it, the worst-case time complexity of at least one of
these operations is Ω(log n).

Hint: You might want to use the result we will look at in Tuesday’s class that sorting (under
the same restrictions) requires Ω(n logn) time.
Bonus [5] Suppose s is an array of n things and p is an array of n integers representing a

permutation (i.e. the value of p is a one-one onto function from {0, ..n} to {0, ..n}). Each item of
p indicates the rank of the corresponding item of s. Write a procedure to sort s according to rank.

procedure sortByRank( p : array 〈N〉 ,var s : array 〈T 〉)

precondition p is a permutation of {0, ..p.length} and p.length = a.length
changes s
postcondition ∀i ∈ {0, ..p.length} · s0(i) = s(p0(i))

For example, if p and s are initially

s bob doug alice clara
p 1 3 0 2

then the final value s should be

s alice bob clara doug

and it doesn’t matter what the final value of p is.
Implement this procedure in time Θ(n), where n is the length of p. Do not use any temporary

arrays. Explain why the time is linear.

2


