
Assignment 4

Algorithms: Correctness and Complexity

2014 Solution

Q0 [20] MARS
You are on the operations team of the CSA’s Mars Ascend and Return Samples mission.

The rover has identified hundreds of samples (set S) that could be returned. Each sample
x ∈ S has a real weight w(x) and a real value v(x). A subset of S is optimal if it maximizes
the total value while the total weight is under or equal to wmax.
(a) [10] Give a greedy algorithm for this problem. Your algorithm need not find an

optimal subset, but it should do a reasonable job at selecting a reasonable subset.

Solution: There is always at least one, which is the empty set, so our
invariant does not need to say “if there is a solution”. Since we are not trying
to make the solution optimal, the invariant need not (indeed should not) say
“there is an optimal solution ... ”. I decided to order the samples by density,
where the density of sample x is v(x)/w(x)

var C := ∅ // C collects the solution. At the end C is the answer
var r := wmax // r is the remaining weight.
inv: there is a solution that includes all items in C and only items in C ∪ S.

inv r = wmax −
∑

x∈C
w(x)

while S �= ∅

val x | x is the (or a) densest item of S.
if w(x) ≤ r then

// Keep x
C := C ∪ {x}
r := r − w(x)

end if

end while

(b) [10] Give counter-examples showing that each of the three most obvious ways of
ranking the samples can lead your algorithm to find suboptimal subsets.
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Solution: I’ll write each sample as v/w where v is the value and w is the
weight

• Highest value first. Suppose we have a weight limit of 6. The samples in order of
value are 5/5, 4/3, 4/3. Picking the most valuable first prevents the optimal solution
of value 8.

• Lowest weight first. Suppose we have 1/1, 4/2, 4/2 and a weight limit of 3, lowest
weight first gives 1/1 and 4/2 with value 5, but the best solution has value 8.

• Highest density first. Again density is value over weight. Suppose we have 5/3, 3/2,
3/2 and a weight limit of 4. The highest density first strategy picks 5/3 only, whereas
a value of 6 can be obtained.

Q1 [10] You work for ZipTrip.com, the travel site for people in a hurry. They guarantee
to find the quickest sequence of flights, from location x to location y, such that the first
flight leaves on or after time t.

Their database consists of a set of flights, where each flight is associated with a starting
airport, a destination airport, a boarding time, and a landing time.1 Your algorithm needs
to find the set of flights that gets a passenger from airport x at time t to airport y the
soonest. Layovers where the passenger must change plane must be at least 30 minutes
between landing and boarding time, 60 minutes if the passenger must change terminals, or
120 minutes if the passenger must pass through immigration and customs.. Find an efficient
algorithm to solve this problem. Keep in mind that ZipTrip.com will be processing many
such queries on the same data base, so some preprocessing of the data base is reasonable
to do.

Solution: I would approach this using Dijkstra’s algorithm. In order to do
that, we make a graph in which each node represents an arrival or a departure
of a flight. Let’s say for each flight f , d(f) is its departure node and a(f) is
its arrival node. Then put in edges so that for each flight f there is an edge
from d(f) to a(f). The weight of these edges is the length of the flight. Say
that f connects with g the airport of a(f) is the same as the airport of d(g)
and the time of d(g) is sufficiently long. Now we add an edge from a(f) to
d(g) for each pair of connecting flights. The weight of such an edge is the time

1In reality a flight might have stops.. However we can treat such a flight as several simple flights for
our purposes.
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difference between the arrival and the departure. As new information comes in
about flights,

Having built this graph, we can now process each customer query using
Dijkstra’s algorithm.

[In practice, we would likely use A∗, which is an optimized version of Dijk-
stra’s that uses heuristic information. However we did not cover A∗, so if you
used plain Dijkstra’s that is fine.]

Q2 [20] As mentioned in class, the greedy algorithm for making change fails for cer-
tain mixes of denominations, for example {1, 5, 10, 25}. Develop a dynamic programming
solution for the following problem. Input: a natural number t and a set S of coins, each
having a natural number value. Output: A minimal sized subset of coins that have total
value t.
(a) [5] Develop a recursive algorithm to determine whether there is or is not a subset

of S that has total value t.
(b) [5] Develop an efficient top-down (memoizing) algorithm to solve the problem in

part (a)
(c) [5] Develop an efficient bottom-up algorithm to solve the problem of part (a).
(d) [5] Modify your solution to either part (b) or (c) to output a minimal sized subset

of coins that adds up to t, if there is one.

Solution:
(a) First we will put S into a sequence s without repetition, so that we can

refer to subsets of it using a single integer: s{0, ..i} is the subset of S consisting
of the first i elements of s.

The question that the algorithm needs to answer is the size of the smallest
subset of s {0, ..i} that has total value of g. Let w(x) be the value of coin x.
Define

val(C) =
∑

x∈C

w(x)

mss(i, g) = min
C⊆s{0,..i}|g=val(C)

|C|

That is, mss(i, g) is the size of a minimally sized subset of s {0, ..i} whose total
value is g, assuming there is one. We’ll take the minimum of the empty set to
be ∞, so if there is no subset of s {0, ..i} whose total value is g, the value of
mss(i, g) is ∞.
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proc minimalSubsetSize(i, g) : N

pre 0 ≤ i ≤ s.length and 0 ≤ g ≤ t
post result = mss(s, i, g)
if i = 0 then

if g = 0 then return 0 else return ∞ end if

else

var best :=∞
val x := s(i− 1)
// Consider keeping x
if w(x) ≤ g then best := 1 + best minmss(i− 1, g − w(x)) end if
// Consider discarding x
best := best minmss(i− 1, g)
return best

end if

end minimalSubsetSize

Now the answer is given by minimalSubsetSize(s.length, t).
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(b) Converting the algorithm to part (a) is just a matter of introducing a
cost table C that maps (i, g) pairs to either mss(i, g) or nil.

var C : {0, .., s.length} × {0, .., t} → N ∪ nil
// data invariant ∀i, g · C(i, g) = nil ∨ C(i, g) = mss(i, g)

Now the algorithm is given by

proc minimalSubsetSize(i, g) : N

pre 0 ≤ i ≤ s.length and 0 ≤ g ≤ t
post result = mss(s, i, g) = C(i, g)
if C(i, g) = nil ∧ i = 0 then

if g = 0 then C(i, g) := 0 else C(i, g) :=∞ end if

elsif C(i, g) = nil then

var best :=∞
val x := s(i− 1)
// Consider keeping x
if w(x) ≤ g then best := 1 + best minmss(i− 1, g − w(x)) end if
// Consider discarding x
best := best minmss(i− 1, g)
C(i, g) := best

end if
return C(i, g)

end minimalSubsetSize
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(c) There are a number of orders we could fill the table in with. Here is
one.

var C : {0, .., s.length} × {0, .., t} → N

C(0, 0) := 0
for g ← [1, .., t] do C(0, g) :=∞ end for
for i← [1, .., s.length] do

for g ← [0, .., t] do

var best :=∞
val x := s(i− 1)
// Consider keeping x
if w(x) ≤ g then best := 1 + best minC(i− 1, g − w(x)) end if
// Consider discarding x
best := best minC(i− 1, g)
C(i, g) := best

end for

end for

At the end of this process the answer is in C(s.length, t).
(d) Provided C(s.length, t) �= ∞ we can work our way back through the

table to determine the set.

output var F : Set 〈Coin〉 := ∅
var g := t
var i := s.length
while g �= 0 do

if C(i, g) = C(i− 1, g) then

// Discard C(i)
i := i− 1

else

F := F ∪ {s(i− 1)}
i := i− 1
g := g − w(s(i− 1))

end if

end while
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