
Engi 6892 Algorithms: Complexity and Correctness

T. S. Norvell (c) 2011

2011 Dec 10

Instructions: Answer all questions. If possible, write your answers in the space provided. Request a
yellow booklet if more space is required. Answers in yellow booklets will not be marked unless there is
a clear indication in the space provided on the exam paper that the answer is in the yellow booklet and

your name is on the yellow booklet. The same goes for answers on the back-side of any pages. This is an
closed book exam. Textbooks, notes, and electronic devices are not permitted; no, you can’t use your
cell phone as a clock. However, paper inter-language dictionaries are permitted. Set your cell phone to
silent and put it away.

Formula Sheet: You may use a single 8.5” by 11” sheet of paper.
Total points: 90 + bonus of 15

Name:

Student #:

Folders/Documents/courses/alg/2011/Exams-and-quizzes/Ada.jpg

0

Student #:

Q0 [15] Suppose we have two arrays of strings a and b, each of length n; array a is sorted in ascending
order array b is in descending order. We want to determine, in O(logn) time, whether there is a point p
where a and b have the same value. If there is such a point, then there is a last one, and that point will
be such that a[p] ≤ b[p] but a[p+ 1] > b[p+ 1]. To deal smoothly with boundary cases, we will assume
that a[0] ≤ b[0] and a[n− 1] > b[n− 1].

precondition: a[0] ≤ b[0] ∧ a[n− 1] > b[n− 1]
postcondition: 0 ≤ p < n− 1 ∧ a[p] ≤ b[p]∧ a[p+ 1] > b[p+ 1]

(Of course changing a and b is not allowed.)
(a)[5] What is the invariant?

(b)[3] What is the loop guard

(c)[2] What is the variant?

(d)[5] Write a proof outline for this problem so that it takes O(logn) time.

Engi 6892 Final Exam 1 2011 Dec 10 – Happy Birthday Ada

Student #:

Q1 [15]
Design the syntactic and semantic interface for an abstract data type representing “bags”. A bag

is similar to a set except that each element may be in the “bag” any number of times, as long as that
number is natural (i.e. a nonnegative integer). Methods should include “add(x)”, which increases (by 1)
the number of times item x is in the bag, “remove(x)”, which reduces (by 1) the number of times x is
in the bag, provided the item is in the bag a positive number of times, and “contains(x)”, which returns
the number of times x is in the bag.

Engi 6892 Final Exam 2 2011 Dec 10 – Happy Birthday Ada

Student #:

Q2 [15]
(a)[5] Last week I figured out that, if I could find an algorithm for the Frobnitz problem, I could sort

n things as follows

procedure frobnitzSort(var a : Array[T])

var b : Array[T] := new Array[T](a.length)
transform(a, b)
frobnitz (b)
untransform(b, a)

end frobnitzSort

The transform and untransform procedures are both Θ(n) time (where n is the length of the array) in
the worst case.

What do these facts imply about of the Frobnitz problem? (Include any caveats.)

(b)[5] Yesterday, I discovered a O(n logn) time (in the worst case) algorithm to solve instances of the
Frobnitz problem of size n, using only comparisons and moves. What can we say about this algorithm?
What more can we say about the problem? (Include any caveats.)

(c)[5] Usually we are concerned more with worst-case time complexity than with average-case time
complexity. Why is that?

Engi 6892 Final Exam 3 2011 Dec 10 – Happy Birthday Ada

Student #:

Q3 [15] We need to fly a small plane from St. John’s to Acapulco. The plane can safely fly up
to 500km on one tank of gasoline. An optimal route will have the fewest stops for refuelling. Suppose
as input we have a list of airports in North America and the Caribbean along with their latitude and
longitude. Assume that flights can follow great circle routes (geodesics).

(a)[10] Describe an efficient approach to solving this problem. (You do not need to write out the
algorithm in detail.)

(b)[5] What is the time complexity of your algorithm? (In stating the complexity, be sure to define
any variables you use; e.g., don’t use n unless you tell me what n means.)

Engi 6892 Final Exam 4 2011 Dec 10 – Happy Birthday Ada

Student #:

Q4 [15] We have a list of n jobs [a0, a1, ..an] to do. Each job ai is associated with a profit ai.p and
a deadline of ai.d. For example we might have

Job: a0 a1 a2 a3 a4
.p 50 25 15 30 20
.d 3 1 2 1 3

Each job takes 1 unit of time. The clock starts at time 0. A set of jobs is a solution if the set can be
ordered so that each job ends on or at its deadline. For example {a0, a1, a2} is a solution as we can
execute a1 during the time period [0, 1), a2 during period [1, 2),and a0 during period [2, 3). However any
set of size 4 is not feasible and neither is any superset of {a1, a3}. The optimal solution has the greatest
profit; in the example it is {a0, a3, a4} with a profit of 100.

(a) [10] Design a greedy algorithm to find an optimal solution. [Hint: consider jobs in order of
decreasing profit.] No proof is required.

(b) [5] What is the time complexity of your algorithm?

Engi 6892 Final Exam 5 2011 Dec 10 – Happy Birthday Ada

Student #:

Q5 [15] A Stirling number of the first kind
[
n
k

]
is the number of permutations of {0, ..n} that have

exactly k cycles. (For example [0, 2, 1, 4, 5, 3] has 3 cycles and so contributes 1 to
[
6

3

]
.) This can be

calculated by the following set of formulas

[
0

0

]
= 1

[
n

0

]
= 0, for n > 0

[
0

k

]
= 0, for k > 0

[
n

k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1

k − 1

]
, for n > 0 and k > 0

For example
[
4

2

]
= 11 because

[
3

2

]
= 3 and

[
3

1

]
= 2

Design a bottom-up dynamic-programming algorithm to calculate
[
n
k

]
, where n, k ≥ 0.

Engi 6892 Final Exam 6 2011 Dec 10 – Happy Birthday Ada

Student #:

Bonus [15] I recently saw a “jigsaw puzzle” with 1024 interlocking, roughly rectangular pieces (all
the same shape), where each piece is coloured a different shade of gray on the front and has a different
number on the back. The puzzler can upload a photograph to a website and will receive instructions for
putting together the puzzle to resemble the photograph. If the photo is broken into 1024 pixels, then
it is fairly obvious that the best solution (in terms of total error) is to pair the lightest pixel with the
lightest puzzle piece and so on. A more interesting problem is what happens when the photo is broken
into m pixels, with m < 1024. Now a subset of the grey pieces must be selected. The problem is this:

• Each instance consists of two sorted (nondecreasing) lists of integers, a and b, with lengths of m
and n, respectively, so that m ≤ n. (a lists the grey levels of the pixels, while b lists the grey levels
of the pieces.)

• A solution is a sublist c of b of length m. (A sublist of b is a subset of the items of b in their original
order; see examples below.)

• An optimal solution minimizes this cost function:

∑

k∈{0,..m}

(ak − ck)
2

For example, if the pixels are a = [4, 5, 6] and the pieces are [1, 3, 5, 7, 9], the solutions are the 10
sublists of b that have length 3, namely

[1, 3, 5] , [1, 3, 7] , [1, 5, 7] , [3, 5, 7] , [1, 3, 9] , [1, 5, 9] , [3, 5, 9] , [1, 7, 9] , [3, 7, 9] , [5, 7, 9] .

The cost of the first solution is (4− 1)2 + (5− 3)2 + (6− 5)2. All the costs are shown below:

[1, 3, 5] [1, 3, 7] [1, 5, 7] [3, 5, 7] [1, 3, 9] [1, 5, 9] [3, 5, 9] [1, 7, 9] [3, 7, 9] [5, 7, 9]
14 14 10 2 22 18 10 22 14 14

(a)[5] Design a recursive procedure to find the cost of a minimum cost solution for subinstances
that use only the first i items of list a and only the first j items from list b. (You may assume, as a
precondition, 0 ≤ i ≤ j ≤ n and i ≤ m ≤ n).

(b)[5] Design an efficient bottom-up dynamic-programming algorithm to compute a cost table.
(c)[5] Design a procedure to print an optimal solution from the table.

(Out of room? Ask for a yellow book.)

Have a happy holiday and an enjoyable work term.

Engi 6892 Final Exam 7 2011 Dec 10 – Happy Birthday Ada

