
Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Sets

A set is a collection of (mathematical) objects.

Each object x is either contained in a set S or not.

We write x ∈ S to mean ‘x is an element of S’ or ‘x is in

S’ or ‘S contains x’

We write x �∈ S to mean ‘x is not an element of S’ or ‘x is

not in S’ or ‘S does not contain x’

Finite sets:

• ∅ the empty set. It contains no objects.

∗ In particular ∅ �∈ ∅

• {x} the set containing only x

• {x, y, z} the set containing x, y, and z, but nothing

else.

Some infinite sets:

• N contains the natural numbers: 0, 1, 2, 3, etc. Note 0
is included!

• Z contains the integers: 0, −1, 1, −2, 2, −3, 3, etc.

• R contains all the real numbers.

• Don’t confuse zero with the empty set: 0 �= ∅.

Equality: Two sets are considered equal (S = T) iff they

contain exactly the same objects.

• Therefore there is only one empty set (all empty sets

are equal).

Typeset September 10, 2018 1

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Union: S∪T is the set that contains all objects contained

either in S or in T or in both.

• x ∈ (S ∪ T) exactly if x ∈ S or x ∈ T

Intersection: S ∩ T is the set that contains all objects

contained both in S and in T .

• x ∈ (S ∩ T) exactly if x ∈ S and x ∈ T

Subtraction: S − T is the set that contains all objects in

S that are not in T .

• x ∈ (S − T) exactly if x ∈ S and x /∈ T

Subsets:

• S ⊆ T means ‘S is a subset of T ’, i.e., every object in

S is also in T .

• In particular, S ⊆ S and ∅ ⊆ S, for any set S.

• E.g. N ⊆ Z

Don’t confuse singleton sets with their single element.

• Is 1 ∈ {1, 2, 3} ? Yes

• Is {1} ∈ {1, 2, 3} ? No

• Is {1} ∈ {{1} , {2} , {3}} ? Yes

• Is 1 ∈ {{1} , {2} , {3}} ? No

• Is ∅ ⊆ {1, 2, 3} ? Yes

• Is {∅} ⊆ {1, 2, 3} ? No

Python Note: Python has two types of objects for

representing sets: “set” and “frozenset”. Objects of

Typeset September 10, 2018 2

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

type set are mutable. Objects of type frozenset are

immutable.

Typeset September 10, 2018 3

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Set Comprehension (Set Builder

Notation)

Filtering. Let A be some description of variable x (i.e. a

Boolean expression; e.g. x > 0.)

• {x ∈ S | A} means ‘that subset of S containing all and

only elements described by A’.

• For example:

∗ {x ∈ R | x > 0} is the set of positive real numbers

∗ {x ∈ N | x/3 ∈ N} is the set of natural number that

are multiples of 3.

Mapping. Let F be some expresion involving x.

• {F | x ∈ S} means the set of all values of F where x
is some element of S.

• For example:

∗ {2x | x ∈ N} is the set of even natural numbers

∗ {f (x) | x ∈ Z} is the set of values of f when its

argument is an integer.

Python Note: Python supports both filtering and

mapping. For example

• Filtering: { x for x in R if x > 0 }

• Mapping: { 2*x for x in S }

• Both: { 2*x for x in S if isOdd(x) }

Typeset September 10, 2018 4

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Sets of integers

• {0, ..n} the first n natural numbers

∗ {0, ..28} integers representable by 8 bits unsigned.

∗ {0, .. length(s)} the indecies of sequence s.

• {i, ..j} all integers from i up to but not including j.

∗ {−27, ..27} integers representable by 8 bits 2’s-

complement.

∗ Use filtering to describe {i, ..j}

∗ {x ∈ N | i ≤ x < j}

• {i, .., j} all integers from i up to and including j.

∗ {−1, .., 1} = {0,−1, 1}

∗ Use filtering to describe {i, .., j}

∗ {x ∈ N | i ≤ x ≤ j}

Typeset September 10, 2018 5

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Pairs and tuples

Pairs, triples, and tuples:

• (x, y) is a pair consisting of x on the left and y on the

right.

• Note that (x, y) �= (y, x) unless x = y.

• We can also have triples (x, y, z) and in general

n-tuples for n ≥ 2.

• E.g. (1, π, true, ‘a’, ∅) is a 5-tuple.

Python note: In ordinary math, there are no 1-tuples.

I.e., x = (x). However, in Python, there are 1-tuples,

written somewhat perversely as (x,). For example

in Python len((42,)) == 1. What Python calls

“tuples” are, in mathematical terms, “sequences”. More

below.

Cartesian product:

• S × T is the set of all pairs (x, y) such that x ∈ S and

y ∈ T .

∗ E.g.

{0, 1, 2} × {‘a’, ‘b’}

= {(0, ‘a’) , (0, ‘b’) , (1, ‘a’) , (1, ‘b’) , (2, ‘c’) , (2, ‘c’)}

∗ E.g. R× R is the Cartesian plane.

∗ E.g.
{
(x, y) ∈ R× R | x2 + y2 ≤ 1

}
is the unit disk

at the origin.

• S × T × U is the set of all triples (x, y, z) such that

x ∈ S, y ∈ T , and x ∈ U .

• Etc.
Typeset September 10, 2018 6

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Relations and functions.

• A binary relation is any triple (S, T,G) where S and

T are sets and G ⊆ S × T .

• We call S the source, T the target, and G the graph

of the binary relation.

∗ Example: Let S = {0, 1, 2, 3} , T = {‘a’, ‘b’, ‘c’, ‘d’},

G = {(0, ‘a’), (0, ‘b’), (2, ‘b’), (3, ‘d’)}

Then (S, T,G) is a binary relation, illustrated as

Here are some more (illustrations of) binary rela-

tions.

• A partial function (S, T,G) is a binary relation such

that, for each x ∈ S, there is at most one y such that

(x, y) ∈ G.
∗ Example: Here are some examples of partial

functions

• A total function (S, T,G) is a relation such that, for

each x ∈ S, there is exactly one y such that (x, y) ∈ G.

• (Note that each ‘total function’ is also a ‘partial

function’!)

Typeset September 10, 2018 7

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

∗ Examples:

• Examples of binary relations:

• Let f = (S, T,G) be a binary relation and x ∈ S.

∗ We say that f is defined for x iff there is a y ∈ T
such that (x, y) ∈ G.

• Suppose f = (S, T,G) is a partial function and f is

defined for x:

∗ We say f applied to x to mean ‘that y ∈ T such

that (x, y) ∈ G’.

∗ We write f(x)

∗ Of course f (x) only makes sense if f is defined for

x.

∗ If f is a total function, then f (x) is defined for all x
in T .

• S → T is the set of all total functions with source S
and target T .

• S
par
→ T is the set of all partial functions with source S

and target T .

• Let g = (S, T,G) and f = (T,U,H) be partial

functions:

∗ f ◦ g is the composition of f and g and is a relation

Typeset September 10, 2018 8

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

with source S and target U with graph

{(s, u) | ∃t ∈ T · (s, t) ∈ G ∧ (t, u) ∈ H}

∗ If f and g are both partial functions, f ◦ g is a partial

function.

∗ If g(x) is defined and f (g(x)) is defined, then (f ◦ g)
is defined at x and f(g(x)) = (f ◦ g) (x).

∗ So if f and g are both total functions, f ◦ g is a total

function.

∗ Sometimes I write fg instead of f ◦ g.

Domain and Range

The domain of relation R is the set of elements that map

to something

dom(R) = {x ∈ S | R is defined for x}

(For a total function f : S → T the domain is the same

as the source S, i.e,. dom(f) = S.)

The range of R is the set of elements that appear as the

right component of a pair in the graph

rng(R) = {y ∈ T | there is an x ∈ S such that (x, y) ∈ G}

(If the range of a relation is its target, we say the relation

is ‘onto’.)

More Examples

• Consider (Z,Z, J) and

J = {(a, b) ∈ Z× Z | b = a× a}

∗ This is a total function (and hence also a partial

function and a relation).
Typeset September 10, 2018 9

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

∗ Its domain is Z

∗ Its range is {0, 1, 4, 9, ...}

• Consider (R,R, K) where

K = {(x, y) ∈ R× R | x× y = 1}

∗ This is a partial function. It is not total since there is

no (x, y) pair with x = 0.

∗ Its domain and range is R− {0.0}

• Consider (R,R, L) where

L = {(x, y) ∈ R× R | y × y = x}

• This is not a function since we have (4, 2) and (4,−2)
in the graph.

∗ It has a domain of {x ∈ R | x ≥ 0} and a range of

R.

Typeset September 10, 2018 10

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

A digression on terminology (not covered in

class)

The words ‘relation’, function’ and ‘partial function’

are defined differently by different people.

Some people define ‘function’ to mean (what I’ve called)

‘total function’.

Some people define ‘function’ to mean (what I’ve called)

‘partial function’.

Some people use the words ‘partial function’ only for

partial functions that are not total.

Furthermore some people aren’t particularly consistent.

For example, both the Mathworld website and the

Wikipedia entry on ‘function’ manage to contradict

themselves. (At least at the time I am writing this.)

When it matters, I will try to avoid omitting the words

‘total’ or ‘partial’.

Also the words ‘domain’ and ‘range’ are used in many

ways. E.g. what I call the source and target, others call

the domain and the co-domain.

You should be aware that different authors will use these

words somewhat differently.

Typeset September 10, 2018 11

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Sequences

A finite sequence is a total function whose source is

{0, ..n}, for some n ∈ N.

I’ll write [a, b, c] for a finite sequence. In particular [] is the

finite sequence of length 0.

I’ll write length(s) or s.length for the length of a finite

sequence.

I’ll write sˆt for the catenation of two sequences.

• For example [a, b, c]ˆ[d, e, f] is [a, b, c, d, e, f].

A sequence of ascending integers [2, ..5] = [2, 3, 4].

If we want to include both end points: [2, .., 5] = [2, 3, 4, 5]

The length of [i, ..j] is max(0, j − i).

The length of [i, .., j] is max(0, j + 1− i).

Typeset September 10, 2018 12

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Items.

• Indexing is from 0.

• If s = [a, b, c, d, e, f] then s(2) = c

• s is defined for i iff 0 ≤ i < length(s)

Subsequence.

• If s = [a, b, c, d, e, f] then s[1, 1, 3, 2] = [b, b, d, c].

• s t is defined iff ∀k ∈ {0, ..length(t)} · 0 ≤ t(k) <
length(s)

• If defined, its length is length(t) and (s t)(k) =
s(t(k)),for all k ∈ {0, ..length(t)}

Segments are contiguous subsequences

• If s = [a, b, c, d, e, f] then s[2, ..5] = [c, d, e]

• If s = [a, b, c, d, e, f] then s[2, .., 5] = [c, d, e, f]

Item sets: Sometimes it’s useful to have a set of items

based on a sequence and a set of indeces

• If s = [a, b, c, d, e, f] then s{2, ..5} = {c, d, e}

• In general, s T is {s(i) | i ∈ T}

Python note: Python has two varieties of generic

sequences: “tuple” and “list”. Objects of type tuple

are imutable. Objects of type list are mutable. In also

has some other sequence types. E.g. “string” objects

are immutable sequences of characters.

Typeset September 10, 2018 13

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Graphs (for reference, not covered in

class)

Directed graphs

A directed graph G = (N,E,←−,−→) consists of a set of

nodes N , a set of edges E and two total functions ←−

and −→ from E → N . For each edge, ←−e is its source

node, while −→e is its target node.

An edge e such that ←−e = −→e is called a loop.

A directed graph is simple if for any given source and

target nodes there is at most one edge. I.e., if for all

(u, v) ∈ N × N , there is at most one e ∈ E, such that

u =←−e and v = −→e .

When E ⊆ N × N and, for each (u, v) ∈ E,
←−−−
(u, v) = u

and
−−−→
(u, v) = v, the graph is simple and is usually written

as G = (N,E).

Undirected graphs

For a set N, {{u, v} | u, v ∈ N} is the set of subsets of

N of size 1 or 2.

An undirected graph G = (N,E,←→) consists of a set of

nodes N , a set of edges E and an incidence function
←→ : E → {{u, v} | u, v ∈ N}. If u ∈ ←→e then u is an

endpoint of e.

An edge such that |←→e | = 1 is called a loop.

Typeset September 10, 2018 14

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

An undirected graph is simple if each set in

{{u, v} | u, v ∈ N} is ←→e for at most one edge e.
(I.e., if ←→ is one-one.)

When E ⊆ {{u, v} | u, v ∈ N} and ←→e = e, for

each e ∈ E, the graph is simple and is usually written

G = (N,E).

Paths

A path in a directed graph is an alternating sequence of

nodes and edges, starting and ending with a node

[u0, e0, u1, ..., en−1, un]

such that, for each i, ui =
←−ei and −→ei = ui+1.

When the graph is undirected, the requirement is that,

for each i, ←→ei = {ui, ui+1}.

The length of the path is the number of edges, n.

The path is said to be a cycle (or circuit) if u0 = un.

Note that for any u ∈ N , [u] is a path of length 0!

Typeset September 10, 2018 15

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Propositional logic

We assume a set B of size 2 B = {true, false}

Implication

Define a function (⇒) ∈ B×B→ B. so that, for all q ∈ B,

we have the following laws

(false⇒ q) = true “False implies anything”

(true⇒ q) = q “Identity”

In table form
p q p⇒ q
false false true

false true true

true false false

true true true

⇒ is called implication.

Its left operand is called the antecedent and its right

operand is called the consequent.

Some laws

(p⇒ p) = true Reflexivity

(p⇒ true) = true Domination

Negation

Define (¬) ∈ B→ B such that

¬p = (p⇒ false) , for all p ∈ B

In table form

Typeset September 10, 2018 16

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

p ¬p
false true

true false

Some laws

¬¬p = p Involution

(p⇒ q) = (¬q ⇒ ¬p) Contrapositive

(p⇒ false) = ¬p Anti-identity

Conjunction (AND) and disjunction (OR)

Define disjunction (OR) by

(∨) ∈ B× B→ B

(p ∨ q) = ¬p⇒ q

and conjunction (AND) by

(∧) ∈ B× B→ B

(p ∧ q) = ¬ (p⇒ ¬q)

Some laws
(true ∧ p) = p
(false ∨ p) = p

}
Identity

(false ∧ p) = false
(true ∨ p) = true

}
Domination

(p ∧ p) = p
(p ∨ p) = p

}
Idempotence

Typeset September 10, 2018 17

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

(p ∧ q) = (q ∧ p)
(p ∨ q) = (q ∨ p)

}
Commutativity

(p ∧ q) ∧ r = p ∧ (q ∧ r)
(p ∨ q) ∨ r = p ∨ (q ∨ r)

}
Associativity

(p ∧ (q ∨ r)) = ((p ∧ q) ∨ (p ∧ r))
(p ∨ (q ∧ r)) = ((p ∨ q) ∧ (p ∨ r))

}
Distributivity

(p ∧ ¬p) = false
(p ∨ ¬p) = true

}{
law of contradiction

law of excluded middle

¬(p ∧ q) = ¬p ∨ ¬q
¬(p ∨ q) = ¬p ∧ ¬q

}
De Morgan’s laws

(p⇒ q) = (¬p ∨ q) Material implication

(p⇒ q) = (¬p⇒ ¬q) Contrapositive law

(p ∧ q ⇒ r) = (p⇒ (q ⇒ r)) Shunting

(p ∧ q ⇒ r) = ((p⇒ r) ∨ (q ⇒ r)) Distributivity

(p ∨ q ⇒ r) = ((p⇒ r) ∧ (q ⇒ r)) Distributivity

(p⇒ q ∧ r) = ((p⇒ q) ∧ (p⇒ r)) Distributivity

(p⇒ q ∨ r) = ((p⇒ q) ∨ (p⇒ r)) Distributivity

if p⇒ q and q ⇒ r then p⇒ r Transitivity

The operands of ∧ are called conjuncts.

The operands of ∨ are called disjuncts.

Equivalence and XOR

Define

(p⇔ q) = (p⇒ q) ∧ (q ⇒ p)

(p� q) = ¬(p⇔ q)

Typeset September 10, 2018 18

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

(p⇔ q) is often called equivalence. It is really just

equality for Boolean values.

(p� q) is called exclusive or

Notation

Course
Digital

Logic

C/C++/

Java

C/C++/Java

bitwise
Other

⇒ ⊃,→
∧ · && &

∨ + || |
⇔ == ↔,≡
� ⊕ != ^ +

¬ ! ~ ∼

Typeset September 10, 2018 19

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Substitution

Free and bound occurrences of variables

In Engineering, we often use variables to represent

quantities in the real-world and boolean expressions

containing variables to represent constraints on those

quantities, imposed by nature or by an engineered

system. For example, we might write

0 ≤ x < 1

to express that the x coordinate of the position of

something (say a robot’s hand) is constrained within

certain limits. A constraint

0 ≤ y < 1

means something quite different. So we can conclude

that the names matter. We call such occurrences of a

variable “free”.

Now consider the following pairs of expressions

• z =
∑N

i=0 f (i) and z =
∑N

j=0 f (j)

• z <
∫∞
0

f (u) du and z <
∫∞
0

f(v) dv

• {(x, y) ∈ R2 | x2+y2 ≤ 1.0} and {(a, b) ∈ R2 | a2+b2 ≤
1.0}

In each case, the two parts of the pair express the same

constraint: they are equivalent.

In these cases the variables i, j , u, v, x, y, a, and b are

internal to the expression. They don’t indicate anything

outside of the expression.

Typeset September 10, 2018 20

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Such occurrences of variables are called “bound”.

An analogous situation comes up in software.

The two subroutines

void f() { ++i ; }

and

void f() { ++j ; }

are not equivalent. The occurrences of i and j are free.

The two subroutines

int g(int i) { return i+1 ; }

and

int g(int j) { return j+1 ; }

are equivalent. The occurrences of i and j are bound.

Single variable substitution

Suppose that E is an expression and that V is a variable.

We’ll write E [V : F] for the expression obtained by

replacing every free occurrence of variable V in E with

expession (F).

Examples

• (x/y)[x : y + z] is (y + z)/y

• (0 ≤ i < N ∧A[i] = 0)[i : i + 1] is

0 ≤ i + 1 < N ∧A[i + 1] = 0

Multiple variables

We sometimes need to replace a number of variables at

once.

Typeset September 10, 2018 21

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

We’ll write E [V0,V1, · · · ,Vn−1 : F0,F1, · · · ,Fn−1] to mean

the simultaneous replacement of n distinct variables by

n expressions.

Example

• (x/y)[x, y : y, x] is (y/x)

• whereas ((x/y)[x : y])[y : x] is (x/x)

Substitution and bound variables

Making the same substitution in two equivalent

expressions must give two equivalent expressions.

Thus we have to be a bit careful about exactly how

substitution is defined.

In making substitutions we do not substitute for bound

variables. For example in the expression
N−1∑

i=0

f(i)

the variable i is bound, so we don’t substitute for it. Thus

(
N−1∑

i=0

f(i)

)

[f, i : g, j + 1] is
N−1∑

i=0

g(i)

Furthermore, it may be necessary to rename bound

variables in order to avoid variables free in F from being

Typeset September 10, 2018 22

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

“captured”. For example
(

N−1∑

i=0

(k × i)

)

[k : i + 1] is




N−1∑

j=0

(k × j)



 [k : i + 1]

which is

N−1∑

j=0

((i + 1)× j)

Note that I had to rename i to j to avoid conflict with the

i in the replacement expression.

Notations

Different authors use different notations for substitution.

• Some writers write E(V/F) while others write E(F/V)

• The most common notation is EVF .

• I use E [V : F] because it is hard to mistake for anything

else.

One-point laws

The substitution notation lets us express some useful

laws called “one-point laws”.

Consider (V = F) ⇒ E where V is a variable and E and

F are expressions. If V �= F then the value of E doesn’t

matter, the implication will be true regardless of the value

of E .

In the case of V = F , we need only worry about the

value of E under the assumption that V = F .

The same reasoning applies to an expression

(V = F) ∧ E .

Typeset September 10, 2018 23

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

The one point laws can be expressed as:

((V = F)⇒ E) = ((V = F)⇒ E [V : F])

and

((V = F) ∧ E) = ((V = F) ∧ E [V : F])

Substitutions quiz

Simplify as much as you can:

• (0 ≤ x < 10) [x : −x]

• i = 0⇒ a(i) > i

• For these three assume a is a sequence of length n
and j < n
∗
(
s =

∑j
i=0 a(i)

)
[s : s + a(j)][j : j + 1]

∗
(
s =

∑j
i=0 a(i)

)
[j : j + 1][s : s + a(j)]

∗
(
s =

∑j
i=0 a(i)

)
[s, j : s + a(j), j + 1]

• For this one, assume a is a sequence of length n,(

j < n ∧ s =

j−1∑

i=0

a(i)

)

⇒

(

s =

j−1∑

i=0

a(i)

)

[s, j : s+a(j), j+1]

Typeset September 10, 2018 24

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Predicate Logic

In natural language, one often wants to express

declarations such as

• All flavours of ice-cream are good.

• Some people like peanut butter.

• The Q output is always equal to the D input of the

previous cycle.

• The system will be in the initial state within 5 seconds

of the reset button being depressed.

To treat such sentences mathematically we extend logic

with “quantifiers”

• ∀, pronounced “for all”, and

• ∃, pronounced “exists”.

You can say that ∀ and ∃ have the same relationship to ∧
and ∨ (respectively) as

∑
has to +.

We will extend our 2-valued propositional logic to deal

with the quantifiers.

Typeset September 10, 2018 25

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

The Quantifiers ∀ and ∃

Suppose that S is a finite set, for example {0, 1, 2, 3}, and

A is a boolean expression then we write

∀V ∈ S · A

mean

A[V : 0] ∧A[V : 1] ∧A[V : 2] ∧A[V : 3]

and we write

∃V ∈ S · B
to mean

B[V : 0] ∨ B[V : 1] ∨ B[V : 2] ∨ B[V : 3]

just as we would write
3∑

V=0

E

to mean

E [V : 0] + E [V : 1] + E [V : 2] + E [V : 3]

where E is some numerical expression.

The quantifier ∀ is pronounced “for all”.

The quantifier ∃ is pronounced “there exists a”.

As long as the set S is finite, ∀ and ∃ are convenient

notations, but not very interesting, as they don’t allow us

to do any thing new.

But, if we allow S to be an infinite set, then we have

something very interesting.

For example consider the set N = {0, 1, 2, ...} then

(∀V ∈ N · A) = A[V : 0] ∧A[V : 1] ∧A[V : 2] ∧ · · ·

Typeset September 10, 2018 26

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

and

(∃V ∈ N · A) = A[V : 0] ∨A[V : 1] ∨A[V : 2] ∨ · · ·

In general

• ∀V ∈ S · A is false if A[V : y] is false for at least one

value y ∈ S, otherwise it is true.

• ∃V ∈ S · A is true if A[x : y] is true for at least one

value y ∈ S, otherwise it is false.

Some examples:

Suppose

• F — a set of flavours.

• iceCream(f) — the variety of ice-cream having flavour

f .

• P — the set of all people.

• peanutButter — peanut butter

• like(a, b) — thing a likes thing b.

• Q(t) the value of wire Q at cycle t. (Assume cycles

are 0, 1, 2, ...)

• D(t) the value of wire D at cycle t.

• Some people like peanut butter

∃p ∈ P · like(p, peanutButter)

• All people like all flavours of ice cream

∀p ∈ P · ∀f ∈ F · like(p, iceCream(f))

• The value of Q is always equal to the value of D of the

Typeset September 10, 2018 27

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

previous cycle (if any)

∀t ∈ N ·Q(t + 1) = D(t)

Restricting focus

Suppose we want to say that all items of a seqence of

odd index are positive. We could say that

∀i ∈ {0, ..s. length} ∩Odds · s[i] > 0

where Odds = {k ∈ N | kmod 2 = 1}. We could also

express this as

∀i ∈ {0, ..s. length} · imod 2 = 1⇒ s[i] > 0

Why? We have

(0mod 2 = 1⇒ s[0] > 0) ∧ (1mod 2 = 1⇒ s[1] > 0)

∧ (2mod 2 = 1⇒ s[2] > 0) ∧ (3mod 2 = 1⇒ s[3] > 0) ∧ · · ·

=

(false⇒ s[0] > 0) ∧ (true⇒ s[1] > 0)

∧ (false⇒ s[2] > 0) ∧ (true⇒ s[3] > 0) ∧ · · ·

=

true ∧ (s[1] > 0) ∧ true ∧ (s[3] > 0) ∧ · · ·

=

(s[1] > 0) ∧ (s[3] > 0) ∧ · · ·

Typeset September 10, 2018 28

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Likewise, to say that at least one item of s at an odd

index is positive, we can write

∃i ∈ {0, ..s. length} · imod 2 = 1 ∧ s[i] > 0

Why?

∃i ∈ {0, ..s. length} · imod 2 = 1 ∧ s[i] > 0

= (0mod 2 = 1 ∧ s[0] > 0) ∨ (1mod 2 = 1 ∧ s[1] > 0)

∨ (2mod 2 = 1 ∧ s[2] > 0) ∨ (3mod 2 = 1 ∧ s[3] > 0) ∨ · · ·

=

(false ∧ s[0] > 0) ∨ (true ∧ s[1] > 0)

∨ (false ∧ s[2] > 0) ∨ (true ∧ s[3] > 0) ∨ · · ·

=

false ∨ (s[1] > 0) ∨ false ∨ (s[3] > 0) ∨ · · ·

=

(s[1] > 0) ∨ (s[3] > 0) ∨ · · ·

In general

∀i · P (i)⇒ Q(i)
means, Q holds for all elements in {i | P (i)}

And

∃i · P (i) ∧Q(i)

means, Q holds for at least one element of {i | P (i)}

Typeset September 10, 2018 29

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Example: Specifying a real-time system.

• Suppose

∗ reset(t)means the reset button is depressed at time

t and

∗ initial(t) means the system is in the initial state at

time t

∗ For times, we will use R+ = {x ∈ R | x ≥ 0},
assuming seconds as the unit.

• The system will be in the initial state at any time the

reset button is pressed

∀t ∈ R+ · reset(t)⇒ initial(t)

• The system will be in the initial state at some time

within 5 seconds of time t

∃u ∈ R+ · t ≤ u ≤ t + 5 ∧ initial(u)

Typeset September 10, 2018 30

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Nesting quantifiers

It’s important to understand how quantifiers nest.

Consider the ambiguous English phrase “everybody

loves somebody”

• Does it mean that there is a person whom everybody

loves?

• Does it mean that, for each person, there is somebody

that they love, though maybe not in each case the

same person?

For the first we have ∃y · ∀x · loves(x, y)

For the second ∀x · ∃y · loves(x, y)

To prove the first, we can exhibit some particular person

(say ‘Raymond’) and then show that every one loves

him/her.

To prove the second, we can exhibit some particular total

function f and then prove that, for person x, x loves f (x).

• The system will be in the initial state within 5 seconds

of the reset button being depressed:

∀t ∈ R+ · reset(t)⇒ (∃u ∈ R+ · t ≤ u ≤ t + 5 ∧ initial(u))

where reset is a predicate indicating the reset button

is depressed and initial indicates that the system is in

its initial state.

• To prove this we can exhibit a function that for each

time t when reset(t) is true, delivers a time u in the

next 5 seconds such that initial(u) is true.

Typeset September 10, 2018 31

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Nested quantifiers and games (not covered in class)

It’s easy to see the last formula as a game. We are given

reset and initial .

• Player U picks a number t such that reset(t) and

reveals that number to player E.

• Player E then picks a number u in response, such that

t ≤ u ≤ t + 5

Player E wins if initial(u). Otherwise U wins.

Now, if player E has a winning strategy, the formula true..

If player U has a winning strategy, the formula is false.

Conversely, we can understand games in terms of

quantifiers.

Often chess puzzles are of the form: find a mate for white

in 3 moves

For states s and t of a chess game, let s � t mean that

state t can follow state s.

Suppose s is a state where it is white’s turn.

There is a guaranteed mate for white in 3 moves or fewer

iff

∃t · s� t∧
(MateForWhite(t)
∨ (∀u · t� u⇒

(∃v · u� v∧
(MateForWhite(v)
∨(∀w · v � w ⇒
(∃x · w � x ∧MateForWhite(x)))))))

Typeset September 10, 2018 32

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Note the only free variable for this formula is s: it is a

formula describing s.

More generally we can make an inductive definition.

Define MateIn(1, s) to mean

∃t · s� t ∧MateForWhite(t)

and define, for n > 1, MateIn(n, s) to mean

∃t·s� t∧(MateForWhite(t)∨(∀u·t� u⇒ MateIn(n−1, u)))

Relationship to set theory (not covered in

class)

Recall: The notation {x ∈ S | A} means the subset of S
with elements x such that A is true.

We can understand ∀ and ∃ in terms of set notation:

(∀x ∈ S · A) = ({x ∈ S | A} = S)

(∃x ∈ S · A) = ({x ∈ S | A} �= ∅)

Therefore

∀x ∈ S · A ∃x ∈ S · A

∅ = {x ∈ S | A} = S true false

∅ = {x ∈ S | A} ⊂ S false false

∅ ⊂ {x ∈ S | A} ⊂ S false true

∅ ⊂ {x ∈ S | A} = S true true

Suppose the notation {x ∈ S · E} means the set of all

values of expression E [x : y] where y is an element of S.

(E.g., {i ∈ N · 2i} = {0, 2, 4, ...})

Typeset September 10, 2018 33

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

We can understand ∀ and ∃ in as follows

(∀x ∈ S · A) = (false /∈ {x ∈ S · A})

(∃x ∈ S · A) = (true ∈ {x ∈ S · A})

Since A is boolean, the set {x ∈ S · A} can have four

values (if well defined)

{x ∈ S · A} ∀x ∈ S · A ∃x ∈ S · A

∅ true false

{false} false false

{true} true true

{false, true} false true

Alternative Notations (not covered in class)

It is quite common to leave out the ∈ S part when the

domain of the variable is understood by some other

means.

Many writers also leave out the · or replace it by some

other symbol. There is a wide variety in conventions for

using parentheses. So you may see any of

∀V · A

∀V A

∀V(A)

∀V ,A

[∀V ∈ S, A]

∀V [A]

(V)A

Typeset September 10, 2018 34

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Quantifier Laws (not covered in class)

There are a number of laws of predicate calculus which

are useful to know.

These are some.

Identity laws:

(∀x ∈ S · true) = true

(∃x ∈ S · false) = false

(∀x ∈ S · false) = false, provided S �= ∅

(∃x ∈ S · true) = true, provided S �= ∅

(∀x ∈ ∅ · A) = true

(∃x ∈ ∅ · A) = false

Change of variable: Provided y does not occur free in A,

(∀x ∈ N · A) = (∀y ∈ N · A[x : y])

(∃x ∈ N · A) = (∃y ∈ N · A[x : y])

De Morgan’s laws

(∀x ∈ S · A) = ¬(∃x ∈ S · ¬A)

(∃x ∈ S · A) = ¬(∀x ∈ S · ¬A)

Domain splitting

(∀x ∈ S ∪ T · A) = (∀x ∈ S · A) ∧ (∀x ∈ T · A)

(∃x ∈ S ∪ T · A) = (∃x ∈ S · A) ∨ (∃x ∈ T · A)

Splitting

(∀x ∈ S · A ∧ B) = (∀x ∈ S · A) ∧ (∀x ∈ S · B)

(∃x ∈ S · A ∨ B) = (∃x ∈ S · A) ∨ (∃x ∈ S · B)

Typeset September 10, 2018 35

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Trading

(∀x ∈ S · A ⇒ B) = (∀x ∈ {x ∈ S | A} · B)

(∃x ∈ S · A ∧ B) = (∃x ∈ {x ∈ S | A} · B)

One-point laws: Provided x does not appear free in F
and that F ∈ S,

(∀x ∈ S · (x = F)⇒ A) = A[x : F]

(∃x ∈ S · (x = F) ∧A) = A[x : F]

Commutative: Provided x is not free in T and y is not

free in S,

(∀x ∈ S · ∀y ∈ T · A) = (∀y ∈ T · ∀x ∈ S · A)

(∃x ∈ S · ∃y ∈ T · A) = (∃y ∈ T · ∃x ∈ S · A)

Distributive laws: Provided x is not free in A

A ∧ (∃x ∈ S · B) = (∃x ∈ S · A ∧ B)

A ∨ (∀x ∈ S · B) = (∀x ∈ S · A ∨ B)

(A ⇒ (∀x ∈ S · B)) = (∀x ∈ S · A ⇒ B)

Distributive laws: Provided S �= ∅ and x is not free in A

(A ∧ (∀x ∈ S · B)) = (∀x ∈ S · A ∧ B)

(A ∨ (∃x ∈ S · B)) = (∃x ∈ S · A ∨ B)

(A ⇒ (∃x ∈ S · B)) = (∃x ∈ S · A ⇒ B)

Typeset September 10, 2018 36

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Precedence and associativity

As you know, mathematics uses “precedence

conventions” to reduce the need for parentheses.

For example we all know that

w × x + y × z

means

(w × x) + (y × z)
rather than

w × (x + y)× z
as × has “higher” precedence than +.

Furthermore we know that

a− b + c means (a− b) + c

rather than a− (b + c) as − and + are “left associative”.

Some operators are associative meaning it doesn’t

matter how we add parentheses. E.g.

((a ∧ b) ∧ c) = (a ∧ b ∧ c) = (a ∧ (b ∧ c))

On the other hand

a ≤ b < c means (a ≤ b) ∧ (b < c)

and we say that ≤, <, =, etc are “chaining”

Typeset September 10, 2018 37

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

The following table shows many of the operators used in

the course in order of precedence (highest to lowest)

x(y) E[v : F] LA

−x ¬x
x× y x/y LA

x + y x− y LA

∩ A

∪ A

x = y x ≤ y x < y x ∈ y Ch

x ∧ y A

x ∨ y A

x⇒ y NA x⇔ y x� y A

∀v ∈ S · x ∃v ∈ S · x

where
LA Left associative

RA Right associative

A Associative

NA Nonassociative

Ch Chaining

The low precedence of the quantifiers basically means

that the scope of a quantified variable extends to the

right to the end of the formula, unless there is explicit

parenthesization or punctuation to stop it. I recommend

putting quantifications in parentheses except when there

is no possible confusion.

That ∧ has higher precedence than ∨ is conventional,

but I recommend using extra parentheses, e.g. to write

p ∧ q ∨ r as (p ∧ q) ∨ r

Typeset September 10, 2018 38

