
Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Analysis for correctness

Engineering designs need to be analyzed to be sure that

they will do the job required in practice.

It is not good engineering to observe that a bridge hasn’t

fallen down yet and conclude that it therefore is safe.

One needs to analyze the design in order to ensure that

it will work in all circumstances.

Testing will ensure that a system will work in a finite set

of circumstances — provided the system is known to be

deterministic.

When a system may be nondeterministic, testing does

not even ensure that the system will work in the finite set

of circumstances tested.1

A single analysis can ensure that a system will work in

all circumstances.

Luckily, we software engineers don’t write code willy-

niilly: We have some reason for believing that the code

we write will work.

Such a reason is —at least embryonically— an analysis.

In this part of the course, we will look at one way to

record our reasons for believing that code will work, in a

way that makes subsequent analysis a fairly mechanical

process. This way is called proof outline logic.

[Reading: Proof Outline Logic—Part 0.]

1 We won’t look at nondeterministic systems in this course. But in your course on

concurrent programming, you will find that nondeterministic systems are the norm when

dealing with concurrency.
Typeset January 26, 2020 1

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Assertions

As I write programs, I often think about connections

between the data state and the program counter.

“If execution gets to here, then i must be less than N ,

but not negative.”

That sort of thing.

This is called an assertion.

A condition is a boolean expression with free variables

from the state. For example, if i andN are state variables

0 ≤ i < N

is a condition. For some states it is true. For others it is

false.

An assertion is a condition that we expect to be true

whenever execution reaches a particular point in the

program.

Dynamic assertion checking

Java provides an assert statement that allows

assertions to be checked dynamically (i.e. at run-time)2

assert 0 <= i && i < N ; a[i] = c ;

C and C++ provide the similar assert macro.

assert(0 <= i && i < N) ; a[i] = c ;

Python provides an assert command

assert 0 <= i and i < N ; a[i] = c

2 However, in Java, assert statements are not checked by default. You are better off to

write and use your own assert method(s).
Typeset January 26, 2020 2

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Static assertion checking

Better yet, tools such as VCC, Spec#, Code Contracts,

Dafny (all from Microsoft), Spark Ada, and Alloy allow

assertions to be checked statically (i.e. before execution)

This is better, because

• dynamic checking checks that assertions are true only

for states actually reached, but

• static checking checks that assertions are true in all

reachable states

For this course, I will put assertions in braces like this:

{0 ≤ i < N}
a[i] := c

Typeset January 26, 2020 3

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Contracts and correctness

Contracts

A contract is a pair of conditions.

(P,R)

• P is called the precondition and

• R is called the postcondition.

Partial correctness

Defn: A command C is partially correct with respect to

a contract (P,R) iff, whenever C is executed, starting in

a state where P is true,

• no error occurs,

• R holds if and when the execution terminates.

Examples

x := x + 1 is partially correct w.r.t.

[0 ≤ x < 99, 0 < x < 100]

val t := x; x := y; y := t is partially correct w.r.t.

[x = 23 ∧ y = 42, y = 42 ∧ x = 23]

Typeset January 26, 2020 4

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Specification variables and program

variables

In these examples, x and y are program variables.

Over time they represent various values.

Specifications variables always represent the same

value.

We’ll use capital letters for these specifications variables.

For example,

x := x + 1 is partially correct w.r.t.

[A ≤ x < Z, A < x < Z + 1]

val t := x; x := y; y := t is partially correct w.r.t.

[x = X ∧ y = Y, y = X ∧ x = Y]

Partially correct means partially correct for all values of

the specification variables.

Typeset January 26, 2020 5

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Proof outlines

A proof outline is a (possibly compound) command

• preceded by an assertion,

• followed by an assertion, and

• with internal assertions, so that every subcommand is

preceded by an assertion

For example

{x = X ∧ y = Y }
if x > y then

{x = X ∧ y = Y ∧ x > y}
m := x

else

{x = X ∧ y = Y ∧ x ≤ y}
m := y

end if

{m = max(X, Y)}

When executing a proof outline, assertions are treated

as comments.

Typeset January 26, 2020 6

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

A syntax for proof outlines

V — variables. E— expressions. C —commands.

A—conditions. O—outlines.

There are 2 kinds of simple commands

C → V := E Assignment

C → skip Skip (do nothing)

There are 4 ways to make compound commands

C → if E then {A} C else {A} C end if Alternation

C → if E then {A} C end if Alternation

C → while E do {A} C end while Iteration

C → C {A} C Sequential composition

Finally there is one rule for proof outlines

O → {A} C {A} Proof outline

Note that, in a proof outline, every command is preceded

by an assertion.

If {P} S {R} is a proof outline,

• P is called its precondition

• Q is called its postcondition

• Assertions within S are called its internal assertions.

Typeset January 26, 2020 7

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Correctness of proof outlines

Defn: A proof outline {P} C {R} is partially correct iff,

whenever command C is executed, beginning in a state

where P holds,

• no error occurs,

• each internal assertion of C holds each time it is

reached and

• R holds if and when the execution terminates.

(for all values of the specification variables).

Notes:

• There is no requirement that C, executed beginning in

a state where P holds, must terminate. We will treat

termination as a separate concern.

• If a proof outline {P} C {R} is partially correct, then

the command C is partially correct with respect to

contract [P,R].

Typeset January 26, 2020 8

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Some partially correct proof outlines

(a)

{x = X ∧ y = Y ∧ x ≤ y}
m := y
{m = max(X, Y)}

is a partially correct proof outline.

(b)

{x = X ∧ y = Y }
if x > y then

{x = X ∧ y = Y ∧ x > y}
m := x

else

{x = X ∧ y = Y ∧ x ≤ y}
m := y

end if

{m = max(X, Y)}

is a partially correct proof outline.

Typeset January 26, 2020 9

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

(c) For this example, assume that x and y can hold any

integer; there is no overflow.

{X = x ≥ 0}
y := 1{
I : x ≥ 0 ∧ y × 2x = 2X

}

while x > 0 do{
x > 0 ∧ y × 2x = 2X

}

x := x− 1{
x ≥ 0 ∧ 2× y × 2x = 2X

}

y := 2× y
end while{
y = 2X

}

Note that the assertion labelled I is considered to be

reached not only before the first iteration of the loop, but

also after every iteration of the loop.

So we need to check that I will be true when the loop is

first reached and after every iteration.

Typeset January 26, 2020 10

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

(d) For this example, assume that i can hold any integer.

There is no overflow

{true}
while i �= 0 do

{i �= 0}
i := i− 1

end while

{i = 0}

This is a partially correct proof outline — even though

the loop may not terminate.

Typeset January 26, 2020 11

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Some proof-outlines that are not partially correct

(e) For this example, assume that x can hold any integer;

there is no overflow

{x = X}
x := x2

{x > X}

For some executions, both the pre- and postcondition

are true. However there are some executions for which

the precondition is true, yet the postcondition is false —

for example, when X = 0 initially.

This is not a partially correct proof outline.

(f) For this example, assume that x can hold any integer;

there is no overflow

{x = X}
x := 2x
{x = 3X}
x := x + 1
{x = 2X + 1}

The internal assertion might not be true when it is

reached.

This is not a partially correct proof outline.

Typeset January 26, 2020 12

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

(g) For this example assume that i and s can hold any

integer; there is no overflow.

{0 ≤ N ≤ length(a)}
i := 0
{i = 0 ≤ N ≤ length(a)}
s := 0{
0 ≤ i ≤ N ≤ length(a) ∧ s =

∑
k∈{0,..i} a(i)

}

while i < N do{
0 ≤ i < N ≤ length(a) ∧ s =

∑
k∈{0,..i} a(i)

}

s := s + a(i)
end while{
i = N ∧ s =

∑
k∈{0,..i} a(i)

}

This is not a partially correct proof outline. We’ll return to

this example later.

From here on, I’ll use “partially correct” and “correct”

interchangeably.

Typeset January 26, 2020 13

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Checking correctness

Universally true

Defn: A boolean expression P is universally true iff it

evaluates to true for any assignment of values (of the

appropriate type) to its free variables. Suppose x is a

variable of type Z.

• The expression x < 1⇒ x < 3 is universally true

• The expression 0 < x < 2⇒ x = 1 is universally true

• The expression x < 5⇒ x < 3 is not universally true

Verification conditions

Our goal will be to reduce checking the correctness of

a proof outline to checking the universal trueness of

boolean expressions.

If we can do that, we have reduced the problem

of checking correctness of outlines to conventional

mathematics.

The boolean expressions that come out of this analysis

process are called verification conditions.

A proof outline

↓ Analysis rules

Verification conditions

↓ Prove universally true
yes/no

Typeset January 26, 2020 14

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Assignment commands

(Aside: We ignore errors for now. See next slide set.)

Let’s look at a few assignment commands.

Example

{y > 4} x := 2 {y > x}
For this outline to be correct, we need that for any initial

state such that y > 4 holds, execution will end in a state

where y > x holds.

Since x will be 2 in the final state, we need that for any

initial state such that y > 4 holds execution will end is a

state where y > 2 holds.

Since y will be the same in the initial and final states, we

need that for any state where y > 4 holds, y > 2 also

holds.

This is true as y > 4⇒ y > 2 is universally true .

Example

Now consider an arbitrary precondition P

{P} x := 2 {y > x}
We need that, prior to the assignment, if P is true, y > 2
will also be true. I.e. that

P ⇒ y > 2 be universally true

Typeset January 26, 2020 15

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Example

{P} x := x + 1 {y > x}
We need that prior to the assignment, if P is true then

y > x + 1 will also be true. I.e., that

P ⇒ y > x + 1 be universally true

The general case

Consider any outline

{P} V := E {R}

For R to be true after an assignment V := E , we

need that R, with V replaced by E , be true before the

assignment.

Recall that R[V : E] means a formula just like R except

with all (free) occurrences of V replaced by E .

We’ll call R[V : E] “the substituted postcondition”.

You can think of R[V : E] as the projection of R into the

initial state.

The precondition of an assignment can be any formula

that always implies R[V : E].

The assignment rule:

If P ⇒ R[V : E] is universally true

then {P} V := E {R} is correct.

Why? Well if P ⇒ R[V : E] is universally true and P is

true before executing the assignment,

Typeset January 26, 2020 16

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

• then R[V : E] will be true before executing the

assignment, and so

• R will be true after executing the assignment.

Example

For this example, x and y are real variables.

What needs to be checked to ensure that

{x < 0} x := x + y {x < y} is correct?

We need to check that x < 0⇒ x + y < y is universally true.

x < 0

⇒ “add y to both sides”

x + y < y

Example

For this example, a, b and m are integer variables.

What is the weakest condition P so that

{P} m :=

⌊
a + b

2

⌋
{a < m < b} is correct?

(The brackets �x� mean the floor of x. I.e. the largest

integer not larger than x.)

We need that P implies a <
⌊
a+b
2

⌋
< b.

The weakest condition that implies a <
⌊
a+b
2

⌋
< b is

a <
⌊
a+b
2

⌋
< b itself.

Can we simplify it?

Typeset January 26, 2020 17

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Here are some useful facts about floor that might help.

For all integers a and b

(a < �x�) = (a + 1 ≤ x)

(�x� < b) = (x < b)

a <

⌊
a + b

2

⌋
< b

= “rewriting”

a <

⌊
a + b

2

⌋
∧

⌊
a + b

2

⌋
< b

= “facts about floor (see above)”

a + 1 ≤
a + b

2
∧
a + b

2
< b

= “multiply through by 2”

2a + 2 ≤ a + b ∧ a + b < 2b

= “subtracting, respectively, a and b”

a + 2 ≤ b ∧ a < b

= “a + 2 ≤ b implies a < b”

a + 2 ≤ b

Typeset January 26, 2020 18

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Some fine print

One expression is an alias of another expression if

they both represent the same memory location. E.g.

references in C++ are often aliases, as are expressions

such as ∗q.

When aliasing is a possibility, we need to consider also

what variables might be aliased by the expression on the

left-hand side of the assignment.

For example, in C, for

{P} ∗q = 1; {∗q == 1 ∧ x == 0} to be correct

requires that P not only imply x == 0, but also q ! = &x.

Similarly in Java

{P} a.x = 1; {a.x == 1 ∧ b.x == 0} to be correct

requires that P not only imply b.x == 0, but also a ! = b.

Aliasing complicates the assignment rule. We won’t

consider it further.

Typeset January 26, 2020 19

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Other commands

For each kind of command, we can state an inference

rule

The skip command

Since skip doesn’t do anything the postcondition must

be true initially. Thus it should be (universally) implied by

the precondition.

The skip rule

If P ⇒ R is universally true

then {P} skip {R} is correct.

Omitting skip

For brevity, we sometimes leave out skip commands.

The rule becomes
If P ⇒ R is universally true

then {P} {R} is correct.

Typeset January 26, 2020 20

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Sequential composition

The sequential composition rule.

For sequential composition of two statements, we have

If {P} S {Q} is correct

and {Q} T {R} is correct

then {P} S {Q} T {R} is correct.

Example

{x = X ∧ y = Y } t := x {t = X ∧ y = Y }

is correct,

{t = X ∧ y = Y } x := y {t = X ∧ x = Y }

is correct, and

{t = X ∧ x = Y } y := t {y = X ∧ x = Y }

is correct; therefore

{x = X ∧ y = Y }

t := x

{t = X ∧ y = Y }

x := y

{t = X ∧ x = Y }

y := t

{y = X ∧ x = Y }

is correct.

Typeset January 26, 2020 21

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Alternation

The alternation rule (2-branches)

If P ∧ E ⇒ Q0 is universally true,

P ∧ ¬E ⇒ Q1 is universally true,

{Q0} S {R} is correct,

and {Q1} T {R} is correct

then {P} if E then {Q0} S else {Q1} T end if {R}
is correct.

Example: Is this outline correct?

{ x = X ∧ y = Y }

if x > y then

{ x = X ∧ y = Y ∧ x > y }

m := x
else

{ x = X ∧ y = Y ∧ x ≤ y }

m := y
end if

{m = max(X, Y) }

We need to show the following

• x = X ∧ y = Y ∧ x > y ⇒ x = X ∧ y = Y ∧ x > y is univ.tr.

• x = X ∧ y = Y ∧ ¬ (x > y)⇒ x = X ∧ y = Y ∧ x ≤ y is univ

• { x = X ∧ y = Y ∧ x > y } m := x { m = max(X, Y) } is �

• { x = X ∧ y = Y ∧ x ≤ y } m := y { m = max(X, Y) } is �

Typeset January 26, 2020 22

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

The alternation rule (1-branch)

If P ∧ E ⇒ Q is universally true,

P ∧ ¬E ⇒ R is universally true,

and {Q} S {R} is correct,

then {P} if E then {Q} S end if {R} is correct.

Typeset January 26, 2020 23

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Iteration

We can think of an iteration

{P} while E do {Q} S end while {R}

as being equivalent to its infinite unrolling — remember

that the backward jump after S is considered to land at

the start of P.

{P}

if E
then {Q} S {P} if E

then {Q} S {P} if E
then {Q} S {P}

. . .

end if

end if

end if

{R}

The iteration rule

If P ∧ E ⇒ Q is universally true,

P ∧ ¬E ⇒ R is universally true

and {Q} S {P} is correct,

then {P} while E do {Q} S end while {R} is correct.

The precondition of an iteration command is called a

loop invariant.

Understanding the loop invariant is often the key to

understanding an algorithm.

Typeset January 26, 2020 24

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Therefore documenting loop invariants is highly

advisable.

Example

Above I claimed that, with i able to hold any integer (no

overflow),

{true}
while i �= 0 do

{i �= 0}
i := i− 1

end while

{i = 0}

is correct.

From the iteration rule, we see that, to show this proof

outline is correct, it is sufficient to show the following:

1. true ∧ ¬ (i �= 0)⇒ i = 0 is universally true

2. true ∧ i �= 0⇒ i �= 0 is universally true

3. {i �= 0} i := i− 1 {true} is correct

The formulae in 1 and 2 can easily be simplified to true
and thus are universally true.

From the assignment rule, the proof outline in 3 is correct

if

i �= 0⇒ (true) [i : i− 1] is universally true

Since i �= 0⇒ true simplifies to true, it is.

Recall that: correct does not imply termination.

Typeset January 26, 2020 25

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Example

For this example, a {0, ..i} means the set of the first i
items of array a.
{true} i := 0 {i = 0} f := false
{I : 0 ≤ i ≤ a.length ∧ f = (t ∈ a {0, ..i})}
while G : i �= a.length ∧ ¬f do

{A : 0 ≤ i < a.length ∧ t /∈ a {0, ..i}}
f := t = a(i)
{B : 0 ≤ i + 1 ≤ a.length ∧ f = (t ∈ a {0, ..i + 1})}
i := i + 1

end while

{R : f = (t ∈ a {0, ..a.length})}

To show this is correct, it is sufficient to show:

1. From i := 0: That true⇒ ((i = 0) [i : 0]) is univ. tr.

2. From f := false: That i = 0⇒ I[f : false] is univ. tr.

3. From the loop that the following are universally true

a. I ∧ G ⇒ A

b. I ∧ ¬G ⇒ R

c. and the following proof outline is correct:

{A : 0 ≤ i < a.length ∧ t /∈ a {0, ..i}}
f := t = a(i)
{B : 0 ≤ i + 1 ≤ a.length ∧ f = (t ∈ a {0, ..i + 1})}
i := i + 1
{I : 0 ≤ i ≤ a.length ∧ f = (t ∈ a {0, ..i})}

i.e., that A ⇒ B[f : t = a(i)] and B ⇒ I[i : i + 1]
are both univ. true.

Typeset January 26, 2020 26

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

The word analyze literally means to ‘break up’.

We have broken up a single complex (and computational)

question (“Is this algorithm correct?”) into 6 simple (and

noncomputational) questions:

• Is true⇒ ((i = 0) [i : 0]) i.e. true⇒ (0 = 0) univ. tr.?

• Is i = 0⇒ I[f : false], i.e.

i = 0⇒ 0 ≤ i ≤ a.length ∧ false = (t ∈ a {0, ..i}) ,

universally true?

• Is I ∧ G ⇒ A, i.e.,

0 ≤ i ≤ a.length ∧ f = (t ∈ a {0, ..i})
∧ i �= a.length ∧ ¬f

⇒ 0 ≤ i < a.length ∧ t /∈ a {0, ..i} ,

universally true?

• Is I ∧ ¬G ⇒ R, i.e.,

0 ≤ i ≤ a.length ∧ f = (t ∈ a {0, ..i})
∧ ¬ (i �= a.length ∧ ¬f)

⇒ f = (t ∈ a {0, ..a.length}) ,

universally true?

• Is A ⇒ B[f : t = a(i)], i.e.,

0 ≤ i < a.length ∧ t /∈ a {0, ..i}

⇒ 0 ≤ i + 1 ≤ a.length ∧ (t = a(i)) = (t ∈ a {0, ..i + 1}) ,

universally true?

• Is B ⇒ I[i : i + 1], i.e.,

0 ≤ i + 1 ≤ a.length ∧ f = (t ∈ a {0, ..i + 1})

⇒ 0 ≤ i + 1 ≤ a.length ∧ f = (t ∈ a {0, ..i + 1}) ,

universally true?

Typeset January 26, 2020 27

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

A way to think about iteration

(Credit to Jeff Edmonds and his book on Algorithms.)

{P} while E do {Q} S end while {R}

Suppose we want to reach some goal R.

We know that R intersects a road P.

To get to R, we do the following.

• Get on to the road P.

• Stop when a condition ¬E holds, where ¬E ∧ P ⇒ R
is universally true.

• Otherwise, if E holds, move forward without leaving

the road.

(clipart courtesy of clipart.email)

Typeset January 26, 2020 28

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Provably Correct

Defn: A proof outline {P} S {R} is provably partially

correct iff it can be shown to be correct using the

inference rules to produce a set of verification conditions

and the fact that the resulting verification conditions are

universally true.

Example: x is a mathematical integer (so no overflow).

{x > 0}
x := x + 1
{x > 0}
x := x + 1
{x > 2}

This is partially correct, but it is not provably correct

because our inference rules for composition and

assignment yield the following verification conditions

x > 0⇒ x + 1 > 0

x > 0⇒ x + 1 > 2

and the second one is not universally true.

Typeset January 26, 2020 29

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Another example: Here j is an integer variable

{len(A) = N}
j := 0
{true}
s := 0
{true}
while j �= N do

{true}
s := s +A(j)
j := j + 1

end while{
s =

∑
k∈{0,..N}A(k)

}

Typeset January 26, 2020 30

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Exercise: Consider this strange proof outline.

{true}
x := 5
{0 ≤ x < 15}
while x �= 0 do

{0 < x < 15}
if x < 10 then {0 < x < 10} x := x− 1
elsif 10 ≤ x < 20 then {10 ≤ x < 15} x := x + 1
elsif 20 ≤ x then {false} x := 0
end if

end while

{0 ≤ x < 15}

Explain why it is correct.

Show it is not provably correct.

Show that you can change the internal assertions to

make it provably correct.

Hint: either of these invariants can be made to work

0 ≤ x < 10

0 ≤ x

One is stronger than the original. One is weaker.

Typeset January 26, 2020 31

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

Omitting assertions

When internal assertions can be easily filled in, we may

omit them.

Composition

Given and incomplete outline {P} S T {R}, you can

always fill in the missing assertion with the weakest

assertion Q such that

{Q} T {R} is correct

If T is an assignment, this will be the substituted

postcondition.

Example: Consider

{P} t := x ; x := y ; y := t {R}

The weakest precondition Q1 so that

{Q1} y := t {R} is correct

is

R[y : t]

The weakest precondition Q0 so that

{Q0} x := y {R[y : t]}

is correct is

(R[y : t]) [x : y]
So

{P} t := x ; x := y ; y := t {y = X ∧ x = Y }

is provably correct if

P ⇒ ((R[y : t]) [x : y]) [t : x] is universally true.

Note the reversed sequence of substitutions into the

postcondition.

Typeset January 26, 2020 32

Algorithms: Correctness and Complexity. Slide set 1. Proof outline logic. c© Theodore Norvell

In general

{P} V : = E W := F {R} is correct if

P ⇒ (R[W : F]) [V : E] is universally true

Iteration

{P} while E do S end while {R}
We can fill in the missing assertion like this

{P} while E do {P ∧ E} S end while {R}

Alternation

{P} if E then S else T end if {R}
We can fill in the missing assertions with

{P} if E then {P ∧ E} S else {P ∧ ¬E} T end if {R}

Summary

If putting in an internal assertion helps make it clear why

an outline is correct, then do so.

If putting in the intermediate assertion obscures clarity,

leave it out.

Don’t omit loop invariants.

Typeset January 26, 2020 33

