
Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

Summing an array

Here we use proof outlines synthetically.

We design a loop ‘invariant first’.

Recall

That {p, ..q} = {i | p ≤ i < q}.

Hence {p, ..p} = ∅.

And, if p ≤ q, then {p, ..q + 1} = {p, ..q} ∪ {q} so that∑

i∈{p,..q+1}

f(i) = f (q) +
∑

i∈{p,..q}

f (i)

The problem

Suppose a is an array of domain {0, ..a.length}.

We want s to be set to the sum of the values in the array.

We can specify the problem with a precondition and a

postcondition.

{ true }

?

{ s =
∑

i∈{0,..a.length} a(i) }

(without changing a )

Typeset January 17, 2020 1



Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

Creating an invariant

Let’s consider ‘jumping into the middle’

If at some point we have summed the first j items of the

array, where j ∈ {0, .., a. length}, what will be true?

In a picture:

As a formula

0 ≤ j ≤ a. length∧s =
∑

i∈{0,..j}

a(i)

We can use this break the problem into two problems.

{ true }

?

{ I : 0 ≤ j ≤ a. length∧ s =
∑

i∈{0,..j} a(i) }

?

{ s =
∑

i∈{0,..a. length} a(i) }

Typeset January 17, 2020 2



Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

Initialization

The first problem is easily solved

{ true }

j := 0
s := 0
{ I : 0 ≤ j ≤ a. length∧ s =

∑
i∈{0,..j} a(i) }

since the VC true⇒ I[s : 0][j : 0] is universally true

Iteration

The remaining problem is

{ I : 0 ≤ j ≤ a. length∧ s =
∑

i∈{0,..j} a(i) }

?

{ s =
∑

i∈{0,..a. length} a(i) }

If we could somehow make j = a. length true, as well as

I, we’d be done.

But this is what a while loop does if I is its invariant and

j �= a. length is its guard.

We have:

{ I : 0 ≤ j ≤ a. length∧ s =
∑

i∈{0,..j} a(i) }

while G : j �= a. length do

{ I ∧ G }

?

end while

{R : s =
∑

i∈{0,..a. length} a(i) }

since I ∧ ¬G ⇒ R is universally true.

Typeset January 17, 2020 3



Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

The body

It only remains to find a loop body

{ I ∧ G : 0 ≤ j < a. length∧ s =
∑

i∈{0,..j} a(i) }

?

{ I : 0 ≤ j ≤ a. length∧ s =
∑

i∈{0,..j} a(i) }

We want each iteration of the loop to get closer to

j = a. length, so it makes sense to increment j and

to make a corresponding adjustment to s to enure the

invariant true at the end of each iteration.

This leads to

{ I ∧ G : 0 ≤ j < a. length∧ s =
∑

i∈{0,..j} a(i) }

s := s + a(j)

j := j + 1
{ I : 0 ≤ j ≤ a. length∧ s =

∑
i∈{0,..j} a(i) }

By the way, because of the index operation, we should

also check that the precondition of s := s + a(j) implies

that 0 ≤ j < a. length, which it does.

Now we need to verify that the body re-establishes the

invariant. We need to check that

I ∧ G ⇒ I [j : j + 1][s : s + a(i)] is universally true.

Typeset January 17, 2020 4



Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

I is 0 ≤ j ≤ a. length∧ s =
∑

i∈{0,..j} a(i) and

G is j �= a. length.

To verify, make the substitutions and check that the

precondition implies the substituted postcondition.

I[j : j + 1][s : s + a(j)]

= substitute

0 ≤ j + 1 ≤ a. length∧s =
∑

i∈{0,..j+1}

a(i)



 [s : s + a(j)]

= substitute

0 ≤ j + 1 ≤ a. length∧s + a(j) =
∑

i∈{0,..j+1}

a(i)





⇐ since 0 ≤ j ⇒ 0 ≤ j + 1 and (j + 1 < n) = (j ≤ n)

0 ≤ j < a. length∧s + a(j) =
∑

i∈{0,..j+1}

a(i)





= split the summation

0 ≤ j < a. length∧s + a(j) = a(j) +
∑

i∈{0,..j}

a(i)





= cancel the a(j)s

0 ≤ j < a. length∧s =
∑

i∈{0,..j}

a(i)

= definitions of G and I

G ∧ I

And this is exactly the precondition of the loop body

Typeset January 17, 2020 5



Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

Summary

We have developed and verified the following proof

outline

{ true }

j := 0
s := 0
{ I : 0 ≤ j ≤ a. length∧ s =

∑
i∈{0,..j} a(i) }

while G : j �= a. length do

{ I ∧ G }

s := s + a(j)
j := j + 1

end while

{ s =
∑

i∈{0,..a. length} a(i) }

Typeset January 17, 2020 6



Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

Reflection

You can use proof outlines and the programming rules in

several ways

• Synthetically. I.e.: top-down step-wise refinement.

This is what we did above. First we found the required

assertions (especially the loop invariant) and then

filled in the program to make a correct outline

• Analytically: I.e.: post-facto verification

Start with the algorithm and try to find assertions that

make a correct proof outline.

• Review:

Start with proof outline and show it is correct.

Generally we combine the approaches. But it is

worthwhile to try to take a synthetic approach as

much as possible.

In this way, we use our desire to produce a correct

program to steer the development.

Typeset January 17, 2020 7



Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

On proofs of programs vs. proofs of

(other) mathematical theorems

Mathematical theorems are often conjectured based on

observation or need.

• Thus the statement of the theorem often provides little

indication of how to prove it.

Examples: Fermat’s last theorem and the 4-colour

theorem.

Programs are generally written by programmers who

have a reason for believing their program will work.

• A proof outline provides a written record of that

reasoning.

It is not much harder to construct a proof outline than to

construct a program.

In fact, because writing down our reasons often helps to

clarify them, writing a proof outline may be easier than

simply writing the unannotated program.

In Engineering, theorems are important if they have

implications for the soundness of a design. Thus in

Engineering there is no shame in stating and proving

easy theorems.

Even if you are not trying to create a rigorous proof, it is

still important, while creating a program, to think about

and document your reasons for believing that it is correct.

Typeset January 17, 2020 8



Algorithms: Correctness and Complexity. Slide set 2. Summing an array. c© Theodore Norvell

The ‘physics’ of programming

What Galileo and Newton did was to invent methods to

reduce question of physics (and physical engineering)

to questions of “ordinary mathematics”. An important

component of this is to tame time by treating it as a real

variable.

Proof outlines provide a bridge that reduces questions

of computer engineering to questions of ordinary

mathematics. Proof outlines tame time in a different

way: by asking what must be true before an action to

ensure that something else must be true after the action.

Typeset January 17, 2020 9


