
Algorithms: Correctness and Complexity. Slide set 4 More on loops. c© Theodore Norvell

Iteration checklist and Termination

Suppose we have a command with this structure

{ P }

S
{ I }

while G do

T
end while

{R }

Checklist

1. Loop initialization establishes the invariant:

{P} S {I} is correct

2. Termination ensures the postcondition:

I ∧ ¬G ⇒ R is universally true

3. The invariant is preserved:

{I ∧ G} T {I} is correct

4. Each iteration brings the state “closer to” ¬G

The first three items ensure (partial) correctness.

The last item ensures that the loop terminates. Let’s

examine that more closely.

Typeset January 31, 2020 1



Algorithms: Correctness and Complexity. Slide set 4 More on loops. c© Theodore Norvell

Variants

Usually the way to ensure termination is to find an integer

expression E

• that can not decrease below 0

I ⇒ E ≥ 0 is universally true

• that decreases with each iteration of the loop

Example 1 In the binary search example, a suitable variant is

r − p. We know that

r − p ≥ 0
because the invariant says

0 ≤ p ≤ r ≤ x.length

And since p < q < r, we know that the next value of r − p,
which is either r − q or q − p, will be smaller than r − p.

As a general scheme we can write

{ I }
while G do

{ I ∧ G }

val V : int := E
{ V = E ∧ I ∧ G }

?b

{ E < V ∧ I}
end while

where E is the variant expression and V is some fresh

variable.

If such an outline is correct, the loop must terminate.

Typeset January 31, 2020 2



Algorithms: Correctness and Complexity. Slide set 4 More on loops. c© Theodore Norvell

Finding invariants

You can often find an invariant by modifying the loop’s

postcondition.

We will look at two techniques for finding an invariant

based on a postcondition

• Deleting a conjunct

• Replacing an expression by a variable

Guiding us is the desire that the invariant be easy to

establish initially.

Deleting a conjunct

Suppose the postcondition R can be split into two

conjuncts R0 and R1 so that

(R0 ∧R1) = R
is universally true or even just

(R0 ∧R1)⇒R

is universally true.

We could use one conjunct as an invariant and the other

as the stopping condition

{R0}
while ¬R1 do

given R0 and ¬R1 ensure R0 while decreasing the

variant

end while

{R0 ∧R1}

Typeset January 31, 2020 3



Algorithms: Correctness and Complexity. Slide set 4 More on loops. c© Theodore Norvell

Example: Designing a divider circuit

We want to divide integer x by integer y.

The precondition is y > 0 ∧ x ≥ 0.

The postcondition is

q × y ≤ x < (q + 1)× y

Rewrite the postcondition to make the ‘and’ explicit.

R : (q × y ≤ x) ∧ (x < (q + 1)× y)

Take the first part for the invariant and the negation of

the second for the guard

{ y > 0 ∧ x ≥ 0 }

make q so that q × y ≤ x
{ I : q × y ≤ x }

// variant is x− q × y
while x ≥ (q + 1)× y do

given x ≥ (q + 1) × y and I change q to ensure

I,decreasing x− q × y
end do

{ q × y ≤ x ∧ x < (q + 1)× y }

Which could be (inefficiently) implemented by

{ y > 0 ∧ x ≥ 0 }

q := 0
{ I : q × y ≤ x } // variant is x− q × y
while x ≥ (q + 1)× y do

q := q + 1
end do

{ q × y ≤ x ∧ x < (q + 1)× y }

Typeset January 31, 2020 4



Algorithms: Correctness and Complexity. Slide set 4 More on loops. c© Theodore Norvell

Replace an expression by a variable

SupposeR is a postcondition and we can find a condition

I so that I[V : E ] implies R, for some variable V and

expression E.

We can take I to be the invariant and V �= E to be the

guard

{ P }

initialize V so that I
{ I }

while V �= E do

?given I and V �= E ensure I , while decreasing a variant

end while

{R }

Typeset January 31, 2020 5



Algorithms: Correctness and Complexity. Slide set 4 More on loops. c© Theodore Norvell

Example: An abstract binary search.

Notation {m, .., n} is the set of integers from m up to and

including n.

{m, .., n} = {i ∈ Z | m ≤ i ≤ n}

Let m and n be integers with m < n.

Let A be a boolean function defined on {m, .., n} such

that ¬A(m) and A(n).

Problem: Find an “up edge”, i.e., a point p such that

¬A(p) ∧ A(p + 1).

Precondition:

¬A(m) ∧A(n) ∧m < n

Postcondition: p is an up edge

R : ¬A(p) ∧A(p + 1)

By replacing the expression p + 1 with a variable, we

get a candidate invariant

J : ¬A(p) ∧A(r)

Note that J [r : p + 1] is R.

For a variant, we’ll use r − p. Now we have a skeleton:

{ ¬A(m) ∧A(n) ∧m < n }

p := m r := n
{ J }

// variant is r − p
while r �= p + 1 do

?given J and r �= p + 1 establish J , decreasing r − p
end while

{R : ¬A(p) ∧A(p + 1) }

Typeset January 31, 2020 6



Algorithms: Correctness and Complexity. Slide set 4 More on loops. c© Theodore Norvell

But wait! how do we know that r− p is nonnegative. Also

how do we know that A(p) and A(r) are well defined. We

need a stronger invariant.

It is tempting to conjoin

m ≤ p ≤ r ≤ n

to J .

However, we also need an invariant that, together with

r �= p + 1, ensures r − p is at least 1 (so it can be

decreased without violating the invariant). p ≤ r will not

do that (consider p = r), but p < r will.

This leads us to an invariant

I : m ≤ p < r ≤ n ∧ ¬A(p) ∧A(r)

Note that I[r : p + 1] implies R.

Revising the skeleton we get

{ ¬A(m) ∧A(n) ∧m < n }

p := m
r := n
{ I : m ≤ p < r ≤ n ∧ ¬A(p) ∧A(r) }

// variant is r − p
while r �= p + 1 do

given I and r �= p + 1 establish I,decreasing r − p
end while

{ ¬A(p) ∧A(p + 1) }

Typeset January 31, 2020 7



Algorithms: Correctness and Complexity. Slide set 4 More on loops. c© Theodore Norvell

Now p < r together with r �= p + 1 ensures that r − p is

at least 2. Thus the (integer part of the) average of p and

r will be such that

p <
⌊p + r
2

⌋
< r

Thus we can implement the loop body

given I and r �= p + 1, establish I decreasing r − p

by

q :=
⌊
p+r
2

⌋

{ p < q < r ∧ I }

if A(q) then r := q else p := q end if

In summary, we have

{ ¬A(m) ∧A(n) ∧m < n }

p := m
r := n
{ I : m ≤ p < r ≤ n ∧ ¬A(p) ∧A(r) }

// variant is p− r
while r �= p + 1 do

{ I ∧ r �= p + 1 }

q :=
⌊
p+r
2

⌋

{ p < q < r ∧ I }

if A(q) then r := q else p := q end if

end while

{R : ¬A(p) ∧A(p + 1) }

Typeset January 31, 2020 8


