
Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Eliminating tail recursion

A recursive call is “tail recursion” if it is the last thing done

before a return.

Many compilers remove tail recursion. (See optional

slides.)

But we can do it ourselves by source-level transformation

procedure f (p)
if e then

S
f (a)

else

T
end if

end f

procedure f (p)
start: if e then

S
p := a
goto start

else

T
end if

end f

procedure f(p)
while e do

S
p := a

end while

T
end f

For example we can optimize quickSort to get

procedure quickSort(var a : array 〈T 〉 ; p, r : Int)

implements sort(a, p, r)
while r − p > 1 do

val i := any value from {p, ..r}
val x := a(i)
var q
partition(a, p, r, x, q)

quickSort(a, p, q)

p := q + 1
end while

end quickSort

Typeset February 24, 2020 1

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Better yet we can ensure that the depth of recursion

never exceeds �log2(r − p)� by only using recursion for

the smaller part of the array

procedure quickSort(var a : array 〈T 〉 ; p, r : Int)

implements sort(a, p, r)
while r − p > 1 do

val i := any value from {p, ..r}
val x := a(i)
var q
partition(a, p, r, x, q)

if q − p < r − q − 1 then

quickSort(a, p, q)

p := q + 1
else

quickSort(a, q + 1, r)

r := q
end if

end while

end quickSort

In my Java implementation, this allowed me to sort 105

items.

Typeset February 24, 2020 2

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Eliminating all recursion from quicksort

Quicksort (of an array) is an entirely top-down, “divide

and conquer” algorithm in that once a problem instance

is divided into smaller subinstances, there is no need to

return to the original instance.

Therefore we can maintain a set of instances yet to be

solved: the WorkSet .

procedure quickSortNR(var a : array 〈T 〉)

implements sort(a, 0, a.length)
varWorkSet : Set 〈Int× Int〉 := {(0, a.length)}
{inv: if we sort every segment inWorkSet then a will be

sorted}

whileWorkSet
= ∅ do

var p, r
(p, r) := any element ofWorkSet

WorkSet :=WorkSet − {(p, r)}
if r − p > 1 then

val i := any value from {p, ..r}
val x := a(i)
var q
partition(a, p, r, x, q)

WorkSet :=WorkSet ∪ {(p, q) , (q + 1, r)}
end if

end while

end quickSortNR

By representing WorkSet as a stack and pushing the

“smaller” subinstance second, we can ensure that

|WorkSet | never exceeds �log2(a.length)�
Typeset February 24, 2020 3

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Aside. Note that this algorithm is parallelizable.

General pattern for top-down

Top-down recursive

procedure p(x)
if x is is a leaf instance then

solve x by direct means

else

do some work on x
break x into smaller child instances x0, x1, ..xn
for i← {0, ..n} do p(xi)

end if

end p

Typeset February 24, 2020 4

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Top-down workset algorithm

procedure p(x)
postcondition R
varWorkSet := {x}
inv by doing all the tasks in the WorkSet, R will be

established.

whileWorkSet
= ∅ do

val y := any element ofWorkSet

WorkSet :=WorkSet − {y}
if y is a leaf instance then

solve y by direct means

else

do some work on y
break y into smaller child instances y0, y1, ..yn
WorkSet :=WorkSet ∪ {y0, y1, ..yn}

end if

end while

end p

Very few algorithms are purely top down.

Exercise: Find a variant expression for this loop or

otherwise show it terminates.

Typeset February 24, 2020 5

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Eliminating recursion from bottom-up

MergeSort is a bottom-up, “conquer and combine”

algorithm

procedure mergeSort(var a : array 〈T 〉 ; p, r : Int)

implements sort(a, p, r)

if r − p > 1 then

var q := any number in {p + 1, .., r − 1}
// For efficiency we pick q near the middle

{p < q < r}
mergeSort(a, p, q) mergeSort(a, q, r)

merge(a, p, q, r)

end if

end mergeSort

where

procedure merge(var a : array 〈T 〉 ; p, q, r : Int)

precondition p ≤ q ≤ r and segment a[p, ..q] is sorted

and a[q, ..r] is sorted

changes a (but only permuting a [p, ..r])
postcondition segment a[p, ..r] is sorted

Exercise: Implement merge .

Typeset February 24, 2020 6

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

A non-recursive merge-sort

Consider any directed accylic graph (DAG) T of pairs

such that

• (0, a.length) is in the DAG

• Pairs (i, i + 1) are leaves, for all i ∈ {0, ..a.length}

• Every nonleaf (p, r) has exactly 2 children (p, q) and

(q, r), for some q, such that p < q < r.

procedure mergeSortNR(var a : array 〈T 〉)

var Solved : Set := ∅
inv All pairs in Solved represent sorted regions of the

array

while (0, a.length) /∈ Solved
let (p, r) /∈ Solved such that (p, r) is a leaf

or both children of (p, r) are in Solved

if (p, r) is a leaf

do nothing

else

Let q be such that (p, q) and (q, r) are the children

of (p, r)
merge(a, p, q, r)

end if

Solved := Solved ∪ {(p, r)}
end while

end p

Typeset February 24, 2020 7

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

General pattern for bottom-up

Bottom-up recursive conquer and combine

The general form of a recursive, bottom-up algorithm

procedure p(x)
if x is a leaf instance then

solve x by direct means

else

break x into smaller child instances x0, x1, ..xn
for i← {0, ..n} do p(xi)
combine the solution for the children to solve x

end if

end

As with the top-down algorithm, the algorithm defines a

DAG of instances.

Typeset February 24, 2020 8

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Bottom-up nonrecursive conquer and combine

If we can anticipate which instances will be in the DAG,

we can solve the instances nonrecursively bottom-up.

procedure p(x)
Consider a DAG T of instance that contains instance x.

var Solved : Set := ∅
inv: All instance in Solved are solved

while x /∈ Solved
pick an instance y /∈ Solved that all of y’s children are

in Solved

if y is a leaf

solve y directly

else

combine the solutions to y’s children so that y is

solved

end if

Solved := Solved ∪ {y}
end while

end p

Typeset February 24, 2020 9

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Layer-by-layer bottom-up

Often bottom up problems can be solved one layer at a

time, starting with the leaves. This will often remove the

need to keep track of solved instances

procedure p(x)
Consider a DAG T of subinstances that contains instance

x.

give each node of T a natural ‘layer number’ so that

children have lower numbers than parents.

var k := 0
inv: all nodes numbered below k have been solved

while the root x is not solved

solve all instances with k as layer number

k := k + 1
end while

end p

Layer-by-layer merge-sort.

The DAG is a tree such that

• Layer 0 consists of intervals (0, 1) , (1, 2) , · · ·

• Layer 1 consists of intervals (0, 2) , (2, 4) , · · ·

• Layer 2 consists of intervals (0, 4) , (4, 8), · · ·

• etc

Typeset February 24, 2020 10

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

Since layer 0 is already solved, we start with solving

layer 1
procedure mergeSortNR(var a : array 〈T 〉)

implements sort(a, 0, a.length)

var grain := 1
// inv.: each of the segments a[0, ..grain],
// a[grain, ..2×grain], a [2× grain, ..3× grain], etc. on

// up to and including a[
⌊
a.length
grain

⌋
× grain, ..a.length}]

// is sorted, and grain > 0
{grain > 0 ∧ a is a permutation of a0 ∧ ∀i ∈ N·

a[cap(i× grain), .. cap ((i + 1)× grain)] is sorted,

where cap(j) = min(j, a.length)}
while grain < a.length do

var p := 0
while p < a.length do

val q := min(p + grain, a.length)
val r := min(q + grain, a.length)
merge(a, p, q, r)

p := r
end while

grain := grain × 2
end while

end mergeSortNR

In mergesort we are able to anticipate the subinstances

that need to be solved prior to solving the superinstances.

However the tree of sub-instances used by the

nonrecursive merge-sort may differ from the recursive

version.

Typeset February 24, 2020 11

Algorithms: Correctness and Complexity. Slide set 8.5. Top-down and bottom-up algorithms c© Theodore Norvell

• Usually the recursive version attempts to balance the

split. E.g. if a.length = 17, the final merge is between

regions of lengths 8 and 9.

• The bottom up version always merges regions of

length = some power of 2. E.g. if a.length = 17, the

final merge is between regions of lengths 16 and 1.

Note that this algorithm’s inner loop is parallelizable.

Typeset February 24, 2020 12

