
Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Search vs. verify

Is it significantly easier to check that an answer has been

found or to find the answer to a problem?

Examples

• Is it easier to find a path that visits every room in a

maze exactly once or to verify that a given path does

exactly that?

• Is it easier to find a factor of

267 − 1 = 147 573 952 589 676 412 927

or to verify that 267 − 1 = 193707721× 761838257287?

• Is it easier to find a proof of a mathematical theorem

or to verify that a given proof is correct?

In each case it is clear that verification can’t be harder

than search, but is it significantly easier?

In each case we know we can verify quickly (i.e. in

polynomial time).

But the best search algorithm we know takes exponential

time.

Two possibilities:

• Every problem that can be quickly verified can be

quickly solved: P = NP

• Many probems that can be quickly verified can not be

quickly solved: P �= NP

Currently we don’t know which.

Typeset April 8, 2020 1



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Intractability

[A very short and somewhat simplified overview.]

Recall our table of times. Assuming 1 operation takes

1 ns.

n = 10 n = 50 n = 100 n = 1000
log2 n 3 ns 5 ns 6 ns 10 ns
n 10 ns 50 ns 100 ns 1µs
n log2 n 33 ns 282 ns 664 ns 10µs
n2 100 ns 2.5µs 10µs 1ms
n3 1µs 125µs 1ms 1 s
2n 1µs 3. 5× 1024y 4× 1039y 3× 10310y
n! 3ms 10× 1073y 3× 10167y 1.3× 102577y
22

n

6× 10317y big Bigger HUGE

As a generalization (the ‘Cobham-Edmonds thesis’) we

consider that

• Algorithms with polynomial (or better) time complexity

are feasible.

• Algorithms with superpolynomial time complexities are

infeasible.

What about problems?

Thus there are good problems and nasty problems.

Recall that a problem’s complexity is the time complexity

of the best algorithm for that problem

If the best algorithm is polynomial (or lower), we say the

problem is tractable.

Typeset April 8, 2020 2



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

If the best algorithm is superpolynomial, we say the

problem is intractable.

There are a few problems that are known to be intractable

Seemingly intractable problems

There are a large number of problems such that

• No one knows they are intractable, but

• No one has found a polynomial time algorithm for

them

An example is integer factorization

• In 1903 Frank Cole factored the Mersenne number

267 − 1
∗ It took him a “three years of Sundays” to do all the

calculations.

∗ But it took only minutes to verify the result

• While factoring methods have improved, even the best

known algorithms are still exponential with respect to

the number of bits.

• Codes based on factoring 1000 bit numbers are still

safe.

• In 2009 factoring a 768-bit number took the equivalent

of 2000 CPU years at 2GHz

Decision problem

Decision problem are problems with “yes/no” answers.

To keep things simple, we focus on decision problems.

Typeset April 8, 2020 3



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

For example, a decision problem version of factoring

asks whether x has a factor less than k.

This is no loss if we are trying to show problems are

hard, since if the decision problem is intractable, then the

search problem is also intractable.

Conversely if the decision problem is tractable, so is the

search problem, as we can use binary search.

Easy to solve problems

The set of decision problems that can be solved in

polynomial time (worst case) is called P.

Does graph G have a path from s to t shorter than k

Does graph G have a spanning tree smaller than k

Does G have an Eulerian tour

Is x divisible by 3?
Is x composite?

Easy to check problems

It turns out that a lot of problems are easy to check, but

seemingly hard to solve.

The set of decision problems whose “yes” answers

can be checked in polynomial time, given a polynomial

amount of evidence, is called NP.

Typeset April 8, 2020 4



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Examples:

Problem Evidence

Every problem in P . A trace of the

computation

Does x have a factor

smaller than k?

2 factors, one smaller

than k

Does G have a

Hamiltonian tour?

A Hamiltonian tour

Does a graph have a 3-
colouring?

Such a colouring

Is a propositional

formula Φ satisfiable?

An assignment to its

variables that satisfies

Φ.

(Equivalently, we can define NP as the set of decision

problems we could solve in polynomial time if we had a

“magic coin”.

The “magic coin” will answer any question we give it

helpfully if the answer to the decision problem’s answer

is “yes” and arbitrarily if the answer is “no”.

For example, to solve the Hamiltonian tour problem, we

could ask the coin “Should I follow edge e next?”.

By the way, this model of computation is called

‘nondeterministic’ and NP stands for ‘nondeterministic

polynomial time’

Exercise: Show the “magic coin” definition of NP is

equivalent to the “polynomial time checking” definition of

NP.)

Typeset April 8, 2020 5



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Polytime reductions

Suppose F : X → B and G : Y → B are two decision

problems.

And that H : X → Y is a problem such that

• we know a polynomial time procedure h for H and

• F (x) = G(H(x)),for all x

We say h is a polytime reduction from F to G.

Lemma: If p and q are polynomials, so is their

composition.

E.g. if p(n) = n2 + n and q(n) = n3 + 1, then their

composition is
(
n3 + 1

)2
+
(
n3 + 1

)
which is n6 + 3n3 + 2

Typeset April 8, 2020 6



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Theorem: Suppose there is a polytime reduction h from

F to G, then

1. if G is tractable, so is F .

2. if F is intractable, so is G.

Proof

Assume there is a polytime reduction h from F to G

1. Suppose that G is tractable.

a. Then there is a polytime procedure for G, call it g.

b. We have the following polytime algorithm for F

· proc f (x) return g(h(x)) end f

c. (This is polytime because h only has time to

produce an output that is of polynomial size with

respect to the size of x, so the total complexity

can be no worse than the composition of the time

functions for g and h, which, by the the lemma, is a

polynomial)

d. Therefore F is tractable.

2. By the contrapositive law: if F is intractable, then so is

G.

Typeset April 8, 2020 7



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Typeset April 8, 2020 8



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Example: 3-colouring graphs and PSAT

3-COLOURING: Given a graph G, is it 3 colourable.

A graph is 3-colourable iff we can colour each node red,

blue, or green such that

• for every edge e, the endpoints of e are coloured

differently.

Example: Is this graph 3-colourable?

PSAT: Given a propositional formula, is it satisfiable.

A propositional formula Φ is satisfiable iff we can assign

each variable false or true so that the whole formula is

satisfiable.

Examples:

• Satisfiable: (¬A⇒ B) ∧ (A⇒ C) ∧ (B ⇒ ¬C)
∗ Evidence: Set B to true and A and C to false.

• Unsatisfiable: (A ∧B) ∧ (A⇒ C) ∧ (B ⇒ ¬C)
∗ Evidence: Try all 8 possible assignments

Typeset April 8, 2020 9



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Now we can construct a reduction from 3-COLOURING

to PSAT as follows

procedure h(V,E)
for each node u in V

create 3 variables and generate the following formula

(Ru ∨Gu ∨Bu) ∧ ¬ (Ru ∧Gu) ∧ ¬ (Gu ∧Bu) ∧
¬ (Bu ∧Ru)

for each edge e in E

let u to v be the endpoints of e

generate the following formula

¬ (Ru ∧Rv) ∧ ¬ (Gu ∧Gv) ∧ ¬ (Bu ∧Bv)
Conjoin all the generated conjuncts to make one big

formula.

return this formula

The fact that this reduction works and is polynomial time

shows that

(a) If 3-COLOURING is intractable, so is PSAT

(b) If PSAT is tractable, so is 3-COLORING
Typeset April 8, 2020 10



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Transitivity

If there is a reduction from F to G and a reduction from

G to H, then there is a reduction from F to H.

Proof: Simply compose the reductions. The composed

reduction is also poly time.

Typeset April 8, 2020 11



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Patient zero: PSAT is a hardestNP problems

Above, we showed that one problem in NP reduces to

PSAT.

In 1971 Steve Cook proved the following theorem

Theorem [Cook]. Every problem in NP can be reduced

to PSAT.

Consequence:.If any problem in NP is intractable, then

PSAT is intractable.

We call a problem that has that property NP-hard. Thus

Consequence. PSAT is NP-hard.

Proof sketch:

Before we get to the proof, let’s think about algorithms

and digital circuits. Suppose we have a deterministic

algorithm f for a problem F : Z → B. And suppose we

know that for an input of size m, the amount of state

needed by z won’t exceed w(m) bits and z won’t require

more than t(m) clock cycles.

For each input of size m, we can create a sequential

circuit scm that uses w(m) D-flip-flops. We’ll use the

convention that flip-flops 1 through m initially hold the

input. Flip-flop 0 should hold the output after t(m) clock

cycles.

Typeset April 8, 2020 12



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

By unrolling the sequential circuit, we can create a

combinational circuit that consists of t(m) copies of the

combinational part of the circuit.

Suppose f is a polynomial time algorithm: Then w(m)
is bounded by a polynomial in m as is t(m). The size

of the the sequential circuit will also be bounded be a

polynomial. And so will be the size of the unrolled circuit.

Now on to the proof.

• Let Q : X → B be a problem in NP.

• Then there is a polynomial time algorithm qc : X×Y →
B for checking if an instance X of Q is a yes given

evidence Y . This follows from the definition of NP.
Typeset April 8, 2020 13



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

∗ There is a y ∈ Y such that qc(x, y)⇔ Q(x).

• For each input size n (measured in bits) the size (in

bits) of the evidence needed to show an item of X is a

yes instance is bounded by some polynomial n. Call it

p(n). This also follows from the definition of NP.

• For each input size n, we can construct a combina-

tional circuit cqcn with one output that computes the

value of qc. The inputs of cqcn are n bits to represent

a member of X and p(n) bits to represent Y . Since

qc only takes a polynomial number of steps and the

number of inputs is polynomial in n, the size of cqcn
will be polynomial in n.

• Given an n-bit input x ∈ X, we can produce a

specialized version of cqcn in which the first n inputs

are set to the representation of x. Call this circuit cqcx.

∗ There is a way to set the p(n) input bits of cqcx so

that cqcx outputs true ⇔ there is a y ∈ Y such that

qc(x, y)

• cqcx can be represented by a propositional formula φx.

∗ φx is satisfiable ⇔ there is a way to set the p(n)
input bits of cqcx so that cqcx outputs true

• The function that maps x ∈ X to φx can be imple-

mented in polynomial time and so it is a polynomial

time transformation.

Aside: A problem, such as PSAT, that is both in NP and

is NP-hard is called NP-complete.

Consequence. PSAT is NP-complete.

Typeset April 8, 2020 14



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Given that PSAT is a hardest problem in NP a natural

question is

is PSAT in P?
or to put it another way is

P = NP ?

If PSAT or any other NP-complete problem is tractable,

then every problem in NP is tractable.

If PSAT or any otherNP-complete problem is intractable,

then every NP-hard problem is intractable.

Typeset April 8, 2020 15



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

In fact PSAT is only patient-zero in the NP-hardness

outbreak. It turns out that PSAT can be reduced to

thousands of other important problems which would be

useful to solve, which means that they too are NP-hard.

If problem PSAT can be reduced to F , then every

problem G ∈ NP can be reduced to F , and so F is

NP-hard. Proof: Since G can be reduced to PSAT

and PSAT can be reduced to F , there is a composite

reduction from G to F .

Reducing PSAT

If we can find a poly-time reduction from some NP-

complete problem (such as PSAT) to some other

problem F in NP, then

• every problem in NP can be reduced to F , so

• it too is one of the hardest problems in NP, i.e.,

• F is also NP-complete.

Example: Showing that 3-colouring isNP-complete.

We already know that 3-colouring is in NP. It remains to

show that we can (poly time) reduce PSAT to 3-colouring.

We need a polynomial time algorithm to transform any

propositional formula Φ to a graph such that the graph

can be 3-coloured iff the formula can be satisfied.

Typeset April 8, 2020 16



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Here is the reduction.

Start with any propositional formula Φ.

Turn it into an equivalent circuit using only AND-gates

and NOT-gates.

For each NOT-gate, make a copy of the following graph.

We can assume, w.l.o.g., that in any colouring B is blue,

R is red and G is green.

Provided R is red, G is green, and B is blue:

• x and y are either blue or red; and

• x is red iff y is blue.

For each AND-gate, make a copy of the following graph.

Provided R is red, G is green, and B is blue:

• x, y, and z are either blue or red;

• x and y are both blue iff z is blue.

Typeset April 8, 2020 17



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Merge together

• Two nodes if one is an output port and the other is a

corresponding input port

• All nodes that correspond to the same variable.

• All nodes labelled R., All nodes labelled G. All nodes

labelled B.

• The final output and the B node.

Example: Φ is: (a⇒ b) ∧ (b⇒ c) ∧ (c⇒ ¬a)

The circuit is this

and a drawing of the final graph is this

where all nodes labelled a, b, and c are the same node

and all nodes coloured red are the same node, etc.

Now the graph can be 3-coloured iff Φ can be satisfied.

Typeset April 8, 2020 18



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

SAT

3SAT

Vertex Cover3 Dimensional

Matching

Partition
Hamiltonian

Circuit

Clique

Etc. Etc.

Known

in NPC

NP
Prime Eulerian

Circuit

Known

in P

A is reducible to B

by Cook's Thm

Etc. Etc.

A B

A is reducible to B

A B

Travelling

Salesperson

Some problems in NP

Factoring

1.

Note that:

• If just one NP-complete problem can be shown to be

tractable, then P = NP meaning that all problems in

NP are tractable.

• If just oneNP problem can be shown to be intractable,

then P �= NP and all NP-complete problems are

intractable.

The big picture

Two worlds

We live in one of two worlds:

Typeset April 8, 2020 19



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

A world where P = NP

In this world there is a polytime algorithm for PSAT and

thus for every other problem in NP.

A huge number of problems that are currently regarded

as ‘hard’ will actually be ‘easy’

• Scheduling problems

• Layout problems (e.g. VLSI layout)

• Planning problems

• Many artificial intelligence problems

• Automated theorem proving

∗ Proving theorems will not be much harder than

proof checking.

• Program verification is far easier.

• Digital circuit verification is far easier.

All methods of public-key cryptography are easily

cracked.

• All your past HTTPS sessions can now be decrypted.

• e-commerce is impractical.

• All web “certificates” are easily faked. Trust no one.

A world where P �= NP

Many problems that appear to be difficult

• actually are difficult.

• All known methods of public-key cryptography are

probably secure.

Typeset April 8, 2020 20



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Myths about intractability

Since computers are getting more powerful, time

complexity will become irrelevant.

• If the best algorithm is Θ(2n) and

• computer speed doubles each year, then

• every year we can increase n by 1 while keeping

computation time the same.

Parallel computing will allow hard problems to be solved

quickly

• If the best algorithm is Θ(2n) and

• we throw twice as much hardware at it, then

• we can increase n by 1.

Quantum computers will solve all NP problems.

• There are fast quantum algorithms known for fast

factoring.

• However not (yet) for any NP-hard problem.

∗ (Note factoring is not known to be NP-hard.)

• Worst-case scenario:

∗ P �= NP soNP-hard problems really are intractable

∗ but public-key cryptography is made insecure by

QC.

Being NP-hard (or NP-complete) is the ‘kiss of death’

for a problem

1. Remember that NP-hardness is all based on the

worst case complexity.

Typeset April 8, 2020 21



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

∗ In fact many NP-hard problems can be solved

quickly on many useful inputs.

∗ For example PSAT can be solved quite quickly for

large instances resulting from real-world problems

(such as digital circuit verification).

∗ Program verification systems such as Spec# rely

on theorem provers and model-checkers that solve

NP-hard problems.

2. For many optimization problems (e.g., travelling

salesman), near-optimal solutions can be found

in polynomial time. Greedy algorithms are often

reasonably good most of the time.

Typeset April 8, 2020 22



Algorithms: Correctness and Complexity. Slide set 19. Intractability c© Theodore Norvell

Further reading

David Harel

• Algorithmics: The spirit of computing

∗ Easy to read. Not terribly technical.

Steve Cook

• Official Problem Definition

∗ http://www.claymath.org/millennium/P_vs_NP/

∗ Fairly technical, but self contained.

Scott Aaronson

• Quantum Computing and the Limits of the Efficiently

Computable

∗ http://www.youtube.com/watch?v=8bLXHvH9s1A

Typeset April 8, 2020 23


