
Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

Incomputability

[A very short introduction.]

Impossibility

1905 Albert Einstein: It is impossible to go faster than the

speed of light.

1925 Werner Heisenberg: It is impossible to know both

position and velocity of a particle.

1931 Kurt Gödel: There are ‘theorems’ of mathematics

that are true (have no counterexamples) but not provable.

1935/36 Alan Turing & Alonzo Church: There are

algorithmic problems that have no algorithmic solution.

Hilbert’s Entscheidungsproblem

In 1900, David Hilbert asked for an algorithm to solve

this problem

Problem: Entscheidungsproblem

Input: A mathematical statement f

Output: Whether or not there is a proof of f .

Given an algorithm for the Entscheidungsproblem, we

could input the Riemann Hypothesis, P = NP, or

Goldbach’s conjecture and, eventually, get an answer as

to whether there is a proof. (Furthermore we would get a

proof or a disproof.)

In different ways, Church and Turing showed that no

such algorithm could exist.

• As a side effect of their efforts, they both gave formal
Typeset December 2, 2014 1

Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

definitions (later proved equivalent) of ‘computable’.

• Turing, almost as an aside, introduced the concept of

the ‘general purpose computer’.

The Halting Problem

As an example, we will prove that there is no algorithm

for the following problem

Problem: The halting problem

Input: A description p of an algorithm that takes a string as

an input; and a string s.

Output: true if the p halts when fed s as an input; false if p

does not halt when fed s as an input.

The halting problem has an important direct application

in program verification: Suppose we have an algorithm

for the following problem

Problem: The verification problem.

Input: A procedure, a precondition, and a postcondition.

Output: True if for every input that satisfies the precondition,

the procedure halts in a state that satisfies the postcondition.

Otherwise false.

If there were an algorithm for this problem, there would

be an algorithm for the halting problem. Therefore there

is no algorithm to solve the verification problem.

Furthermore, many other problems (including the

entscheidungsproblem) can be shown to be no more

computable than the halting problem. (If we had an

algorithm for the entscheidungsproblem, we could

construct an algorithm for the halting problem.)
Typeset December 2, 2014 2

Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

To be definite, we will take p to be a program (hence

a string) defining one or more methods written in an

‘idealized’ Java-like language. The first method defined

will be considered the ‘main’ method.

• I say ‘idealized’ because we will assume that the

program is run on a machine that does not run out of

memory.

Define function H so that H(p, s) is true iff the algorithm

described by string p halts when it is executed with string

s as input: H(p, s) = (p fed s halts)

H(p, s) = (p fed s halts)

Example. If p0 is

“void a(String s) { while(true) { } }”

then H(p0, s) = false (for all s)

Example. if p1 is

“void a(String s) { while(s.length==0) { } }”

then the value of H(p1, s) depends on the length of s.

(If p is not a program —e.g. has a syntax error— we will

assume H(p, s) = false.)1

1 A full proof would mathematically define “p fed s halts”. Instead, I am relying on your

knowledge of programming languages. A proper definition might begin by defining a

‘computation’ as a sequence of states and end by defining “p fed s halts” to mean: every

computation of p that starts with s has finite length.
Typeset December 2, 2014 3

Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

We say that an algorithm computes a function f iff it

• never crashes (e.g. no array bounds violations),

• halts for every input, and

• outputs f (x), for every input x in the domain of f .

We say that a function is computable if there is an

algorithm that computes it.

We will take it as a fact that any algorithm that computes

a function from strings to booleans can be encoded in

our Java-like language.

Typeset December 2, 2014 4

Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

Recap: For all strings p and s, H(p, s) is true iff the

algorithm described by string p halts when it is executed

with string s as input

H(p, s) = (p fed s halts) (1)

Theorem. Function H is not computable.

Proof (by contradiction)

1. Assume H is computable.

2. That means there is an always-terminating algorithm

that computes function H.

3. We can express this algorithm as a program in our

Java-like language. Let h be such a program

h = “boolean h(String p, String s){· · · }”

4. Suppose the procedure name “d” is not used in h.2 Let

d be the string

“void d(String s){ if(h(s,s)) { while(true) { } } } ” ˆ h

5. From the steps 2,3, and 4, for all strings s,

(d fed s halts) = ¬H(s, s)

6. Now consider feeding string d to itself. (Cannibalism!)

7. From step 5 (d fed d halts) = ¬H(d, d)

8. By definition (1) H(d, d) = (d fed d halts)

9. From steps 7 and 8, H(d, d) = ¬H(d, d).

10. This is a contradiction. Our assumption at step 1 must

be false.

11. Thus H is not computable.

2 If there is a procedure named “d” in program h, we can pick another name.
Typeset December 2, 2014 5

Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

Remarks

• Crucial to this proof is the idea that a program is also

data.

• This proof hinges on the assumption that our Java-like

language is able to compute any computable function.

∗ As evidence for this we can show that this lan-

guage can express the same algorithms as many

other languages and formalisms, including Turing

Machines and Church’s Lambda calculus.

∗ In a sense, all (idealized) programming languages

are equivalent to each other and to both Turing’s

model of computation (Turing machines) and

Church’s model of computation (Lambda calculus).

∗ The assumption that all computable functions can

be expressed in these models of computation is

called the Church-Turing thesis.

• An alternative point of view questions whether the

H function was well-defined to begin with. Thus at

step 10 the correct conclusion is that either H is not

computable or H was not well-defined. This point of

view is elaborated in E.C.R. Hehner ‘Problems with

the Halting Problem’.

• As mentioned, Turing used Turing machines3 rather

than a “Java-like language”. First off, high-level

programming languages did not exist at the time.

More importantly, to make the proof complete he

3 He didn’t call them “Turing machines”. He called them “A-machines”; “A” is for

“automatic”.
Typeset December 2, 2014 6

Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

needed to define exactly what it means to ‘feed a

string to a program’; the semantics of Turing machines

can be described in a few lines of mathematics;

high-level languages are much more complex.

• It should not be concluded that, since the halting

problem is insolvable, we therefore can not write

programs to verify other programs. What should be

concluded is that such a program will sometimes

report that it can neither verify nor prove incorrect its

input.

Typeset December 2, 2014 7

Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

Historical Notes

It may seem surprising that the first application of

the formal definition of ‘algorithm’ was to show that

something could not be done by an algorithm. However,

think about it this way: As long as people were showing

that more and more things can be done by algorithms,

the concept was allowed to expand; there was no need

to circumscribe it. Once they needed to show that

something could not be done by an algorithm, it was

necessary to really pin-down the concept, so that it could

be argued that it would not grow any more.

Church and Turing made these discoveries

independently in 1935/36. Later Turing was Church’s

PhD student. While doing his PhD, he also experimented

with building digital circuits with relays. He had a major

role in WWII designing both code breaking algorithms

and electromechanical code-breaking machines. (“But,

it was probably a good thing that the security people

didn’t know [that Turing was homosexual], because he

might then have been fired and we might have lost the

war” — I. J. Good.) After WWII, Turing designed one

of the first general-purpose electronic computers. Thus

Turing both invented the concept of the general purpose

computer (as a mathematical tool) and made important

contributions to its eventual electronic realization.

Church was an important logician and supervisor of many

other important logicians. His lambda-calculus became

Typeset December 2, 2014 8

Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

the foundation for today’s functional programming

languages.

Recommended Reading/Watching

David Harel

• Algorithmics: The spirit of computing

∗ A layperson’s introduction to computing theory.

Martin Davis

• The Engines of Logic

∗ A highly readable history, from Leibniz to Turing,

of the interplay between logic and computation.

Although a history, the math is very well explained.

BBC Horizon

• The Strange Life and Death of Dr. Turing

∗ http://www.youtube.com/watch?v=gyusnGbBSHE

∗ http://www.youtube.com/watch?v=5LHFzNMgWzw

Typeset December 2, 2014 9

