
Problem set 0

Theodore S. Norvell
6892

September 21, 2017

Q0 Take the “binary search challenge”.
Solve the following problem in the language of your choice (e.g. Java, C, or pseudo-code).

Don’t test your code. Email me your solution.
Input: An array (possibly empty) a of numbers (let’s say integers) and a number x. The array

is sorted from smallest to largest.
Output: If x occurs in a, any index at which it occurs. If x does not occur in the array, −1.
Your solution should run in time roughly proportional to the log of the length of the array. A

strategy to accomplish this goal is to try to eliminate roughly half of the remaining places in the
array in each iteration of a loop. For Java you may wish to use this method signature

static int search(int x, int[] a)

for C/C++, you may wish to use this function signature

int search(int x, int *a, int len)

Q1 (a) Substitutions. For each of the following expressions, underline the bound occurrences
in the following

∑

i∈{j,..k}

f(i) (0)

{i ∈ {j, ..k} | P (i)} (1)
(
∀i ∈ {j, ..k} · i < m2

)
(2)

(b) Perform the following substitutions.




∑

i∈{j,..k}

f(i)



 [j : j + 1] (3)

{i ∈ {j, ..k} | P (i)} [i : i+ 1] (4)
(
∀i ∈ {j, ..k} · i < m2

)
[m : i] (5)

Q2. For each of the following proof outlines, write down all conditions that must be universally
true –according to our rules– in order to show the proof-outline to be correct

(a) {P} k := k + 1 {∀i ∈ {0, ..k} · a(i) < b(i)}
(b) {0 ≤ x < n} x := x+ 1 {1 ≤ x ≤ n}

0



(c)

{0 ≤ i < a. length∧¬ (∃k ∈ {0, ..i} · a(k) = x)}
f := (a(i) = x)

{0 ≤ i < a. length∧f = (∃k ∈ {0, ..i+ 1} · a(k) = x)}
i := i+ 1

{0 ≤ i ≤ a. length∧f = (∃k ∈ {0, ..i} · a(k) = x)}
Q3. (a) The gcd function enjoys the following properties.

∀x, y ∈ N · x < y ⇒ gcd(x, y) = gcd(x, y − x) (6)

∀x, y ∈ N · gcd(x, y) = gcd(y, x) (7)

∀x ∈ N · x > 0⇒ gcd(x, x) = x (8)

Fill in the blanks with assertions that make the outline below correct and verifiable using
the rules presented in class. Try to make each assertion as weak as you can.0 Try to state
all assertions as simply as you can. You may assume that a and b hold natural numbers (i.e.
nonnegative integers).

{P : }
if b < a then

{Q : }
a := a− b

else
{R : }
b := b− a

end if
{a > 0 ∧ b > 0 ∧ gcd(a, b) = gcd(A,B)}

(b) List all formulae that need to be shown universally true in order to show the proof outline
is correct. (Hint: There should be 4.) Check that they are universally true.

(c) Building on part (a), find a loop invariant I that makes the following outline correct:

{a = A > 0 ∧ b = B > 0}
skip
{I : }
while a = b do

{P : }
if b < a then

{Q : }
a := a− b

else
{R : }
b := b− a

end if
end while
{a = gcd(A,B)}

0A condition X is called equivalent to a condition Y if X = Y is universally true. For example a ≤ b is equivalent
to a = b∨ b > a. A condition Y is called weaker than a condition X iff X ⇒ Y is universally true and they are not
equivalent. For example a ≤ b is weaker than a < b.

1



(d) List all formulae that need to be shown universally true, aside from those you listed in part
(b). (Hint: There should be 3.) Check that they are universally true; if they are not, you may
need to go back to part (a) and use a stronger P .

Q4. (a) We will say that a proof outline with missing internal assertions is correct if there
is some way to fill in the missing assertions that makes the outline correct. Prove the following
derived rule:

If P ⇒ R[y : f ][x : e] is universally true, then {P} x := e y := f {R} is correct.
(b) More generally:
If P ⇒ R[xn−1 : en−1] · · · [x1 : e1] [x0 : e0] is universally true, then

{P} x0 := e0 x0 := e0 · · · xn−1 := en−1 {R} is correct.

Apply this rule to determine whether the following proof outline is correct.

{x = X ∧ y = Y } x := x+ y y := x− y x := x− y {x = Y ∧ y = X}

Q5. Were you ever taught to find square roots by hand? In this outline, all variables hold
natural numbers. The �� function gives the largest integer not larger than its argument. Write
down all conditions that must be universally true –according to our rules– in order for the
proof-outline below to be correct. You may want to first add additional assertions. Check each of
these conditions to see whether they are universally true.

{p = X ∧ p < 100i}
x := 0
a := 0{
I : a = �√x� ∧ p < 100i ∧X = x× 100i + p

}

while i = 0 do
{I ∧ i = 0}
i := i− 1
x := 100x+ pdiv 100i

p := pmod100i

y := x− 100a2
d := max {b ∈ {0, ..10} | b(20a+ b) ≤ y}
a := 10a+ d

end while
{a =

⌊√
X
⌋

By the way, the algorithm works just as well in bases 2, 4, 8, etc. and so is suitable for a fast
hardware implementation. (For the base-2 case, consider 20 as meaning 10+10 and so 100.) The
binary case is particularly nice as the line

d := max {b ∈ {0, ..10} | b(20a+ b) ≤ y}

can be written as
d := if 100a+ 1 ≤ y then 1 else 0 end if

Q6. Here are some techniques for showing implications are universally true. In each case the
conclusion is that

P ⇒ Q

is universally true. Show that each technique works.

2



(a) It is sufficient to show that Q is universally true.
(b) Unsatisfiable precondition. It is sufficient to show that P is unsatisfiable1

(c) Subsetting the precondition: If P is of the form P0 ∧ P1 ∧ · · · ∧ Pn it is sufficient to show
that

P ′ ⇒ Q

is universally true, where P ′ is the conjunction of some subset of the conjuncts of P . For example
it is sufficient to show

P0 ⇒ Q

is universally true.
(d) By parts: If Q is of the form Q = Q0 ∧Q1 ∧ · · · ∧Qn it is sufficient to show that

P ⇒ Qi

is universally true for each i.

1Which is equivalent to saying ¬P is universally true..

3


