
Assignment 0 Draft Solution

Advanced Computing Concepts for Engineering

Due January 27, 2015

Note that the work that you turn in for this assignment must represent
your individual effort. You are welcome to help your fellow students to
understand the material of the course and the meaning of the assignment
questions, however, the answer that you submit must be created by you
alone.

Please consider preparing your assignment with a typesetting program
such as TeX, LaTeX, LyX, Scientific Word, or MS Word.

Q0 [8] Propositional logic.
Suppose that, instead of defining conjunction (∧), disjunction (∨), and

negation (¬) from implication (⇒), we had instead defined implication from
or and not with the following definition

(p⇒ q) = (¬p ∨ q) Material implication.

Using the laws in the notes about conjunction, disjunction, and negation,
write equational proofs of the following laws

(a) The contrapositive law: (p⇒ q) = (¬q ⇒ ¬p).

1

Solution:

p⇒ q

= “Material implication”

¬p ∨ q

= “Double negation”

¬p ∨ ¬¬q

= “Commutativity”

¬¬q ∨ ¬p

= “Material implication”

¬q ⇒ ¬p

(b) Shunting: (p ∧ q ⇒ r) = (p⇒ (q ⇒ r))

Solution:

p ∧ q ⇒ r

= “Material implication”

¬ (p ∧ q) ∨ r

= “De Morgan’s law”

(¬p ∨ ¬q) ∨ r

= “Associativity”

¬p ∨ (¬q ∨ r)

= “Material implication”

¬p ∨ (q ⇒ r)

= “Material implication”

p⇒ (q ⇒ r)

Q1 [10] Substitutions
(a) Underline all bound occurrences of variables in the following formulae.

Circle all free occurrences of variables.

{i ∈ N | prime (i) ∧ prime(i+ 2) · (i, i+ 2)}

(∀i ∈ {j, ..j + 10} · f(j) = f(i))

2

Solution:

{i ∈ N | prime (i) ∧ prime(i+ 2) · (i, i+ 2)}

(
∀i ∈

{
j, ..j + 10

}
· f(j) = f(i)

)

(b) Make the following substitutions

{i ∈ N | prime (i) ∧ prime(i+ 2) · (i, i+ 2)} [i : i+ 1]

(
∑

i∈{j,..k}

f(i) =
∑

i∈{j,..k}

g(i))[j : j + 1]

(
∑

i∈{j,..k}

f(i) =
∑

i∈{j,..k}

g(i))[j : i]

Solution:

{i ∈ N | prime (i) ∧ prime(i+ 2) · (i, i+ 2)}

(
∑

i∈{j+1,..k}

f(i) =
∑

i∈{j+1,..k}

g(i))

(
∑

m∈{i,..k}

f(m) =
∑

m∈{i,..k}

g(m))

Q2 [12] Quantifiers and sets
Let P be the set of all people on a social network and let friend : P×P →

B be a boolean function expressing that the first person is a friend of the
second.

(a) Use quantifiers to say that friendship is symmetric, i.e. everyone is a
friend of all their friends.

Solution: ∀x, y ∈ P · friend(x, y) = friend(y, x) or ∀x, y ∈
P · friend(x, y)⇒ friend(y, x)

(b) A clique is a set of people who are all friends with each other. Use
quantifiers to express that a set S ⊆ P is a clique.

Solution: ∀x, y ∈ S · friend(x, y)

3

(c) Explain the meaning of the following expression in clear English

∀x ∈ R · ∃y ∈ R · friend(x, y)

Solution: Everyone in R is a friend of someone in R.

(d) Explain the meaning of the following expression in clear English

∃x ∈ R · ∀y ∈ R · friend(x, y)

Solution: There is someone in R who is a friend of everyone
in R (including themselves).

Q3 [10] Refinement
(a)[5] Make a table of all (9) behaviours belonging to Σ † Σ where

Σ = {“x” �→ {1, 2, 3}}

For each behaviour, indicate whether it is accepted (�) or rejected (×) by
each of the following specifications (on Σ † Σ)

a = 〈x′ = 2〉

b = 〈x ≥ 2⇒ x′ = 2〉

c = 〈x′ = 1 ∨ x′ = 2〉

d = 〈x ≥ 2⇒ (x′ = 1 ∨ x′ = 2)〉

magic = 〈false〉

abort = 〈true〉

Solution: Checkmarks indicate accepted behaviours

x x′ magic a b c d abort

1 1 � � � �

1 2 � � � � �

1 3 � � �

2 1 � � �

2 2 � � � � �

2 3 �

3 1 � � �

3 2 � � � � �

3 3 �

4

(b) [5] Look up Hasse diagrams in the Wikipedia. Draw a Hasse diagram
illustrating all the refinement relationships between these specifications.

Solution:
abort

|
d

� �

b c
� �

a
|

magic

Q4 [4] Implementability Again Σ = {“x” �→ {0, 1, 2}}
Consider the following specifications on Σ † Σ

f = 〈x = 0⇒ x′ > 0〉

g = 〈x = 0 ∧ x′ > 0〉

h = 〈x′ = (x+ 1)mod 3〉

magic = 〈false〉

abort = 〈true〉

Which of these specifications are implementable? Explain why.

Solution:

• f is implementable since whatever the input, an output of {“x” �−→ 1}
or {“x” �−→ 2}.

• g is unimplementable since when the input is not 0 there is no output
that makes an acceptable behaviour.

• h is implementable since for each input there is one output.

• magic is unimplementable since there is never an acceptable output.

• abort is implementable since for every input every output is acceptable.

5

Q5 [10] Specification
Suppose n > 0 is a fixed member of N. Remember that {0, ..n} is the

set containing the first n natural numbers. Then {0, ..n}
tot
→ R is the set of

all sequences of real numbers with a length of n. As an abbreviation we’ll

write Rn for {0, ..n}
tot
→ R. We can use Rn as the type of real-valued arrays

of length n. Of course, if a ∈ Rn and i ∈ {0, ..n}, then a(i) is item i of array
a. The expression a(i) is not defined if a ∈ Rn but i /∈ {0, ..n}.

Let
Σ = {“a” �→ Rn, “x” �→ R, “i” �→ N}

Write specifications on Σ † Σ for the problems below. The following
function will be helpful

count ∈ Rn ×R
tot
→ N

count(a, x) = |{j ∈ {0, ..n} | a(j) = x}|

(a) [5] Search: The final value of i indicates a location in a where x can
be found, if there is one. If x is not at any location in a, then the final value
of i should be n. In either case neither a nor x change.

a = a′ = [7, 4, 7, 0, 4]
x = x′ = 4
i = anything
i′ = 4

a = a′ = [7, 4, 7, 0, 4]
x = x′ = 4
i = anything
i′ = 1

a = a′ = [7, 4, 7, 0, 4]
x = x′ = 2
i = anything
i′ = 5

Solution:

〈 (count(a, x) = 0⇒ i′ = n)
∧ (count(a, x) > 0⇒ a(i′) = x)
∧ a′ = a ∧ x′ = x

〉

or 〈 (
(count(a, x) = 0 ∧ i′ = n)

∨ (count(a, x) > 0 ∧ a(i′) = x)

)

∧ a′ = a ∧ x′ = x

〉

(b) [5] Least: The final value of x is the smallest value in a, and the final
value of i indicates (one of) its location(s). a does not change. (You may
assume n > 0.) For example, any of the following two behaviours is accepted.

a = a′ = [7, 4, 7, 0, 4]
x = anything x′ = 0
i = anything i′ = 3

6

Solution:

〈 x′ = a(i′)
∧ a′ = a
∧ ∀j ∈ {0, ..n} · a(j) ≥ x′

〉

7

