
Assignment 1

Advanced Computing concepts for Engineering

Due Feb 8th, 2017 at 11:00am sharp.

Note that the work that you turn in for this assignment must represent your
individual effort. You are welcome to help your fellow students to understand
the material of the course and the meaning of the assignment questions, however,
the answer that you submit must be created by you alone.

Q0 [10] Implementability and nondeterminismAgain Σ = {“x” �→ {0, 1, 2}}
Consider the following specifications on Σ †Σ

f = 〈x′ < x〉

g = 〈x′ ≤ x〉

h = 〈x = 2− x′〉

magic = 〈false〉

abort = 〈true〉

Which of these specifications are implementable? Which are nondetermin-
istic? Explain why.

Q1 [15] Specification
Suppose n > 0 is a fixed member of N. Remember that {0, ..n} is the set

containing the first n natural numbers. Then {0, ..n}
tot
→ R is the set of all

sequences of real numbers with a length of n. As an abbreviation, we’ll write

R
n for {0, ..n}

tot
→ R. We can use Rn as the type of real arrays of length n. Of

course, if a ∈ Rn and i ∈ {0, ..n}, then a(i) is item i of array a. The expression
a(i) is not defined if a ∈ Rn but i /∈ {0, ..n}.
Let

Σ = {“a” �→ R
n, “b” �→ B, “i” �→ N}

Write specifications on Σ †Σ for the problems below. The following function
may be helpful

count ∈ R
n ×R

tot
→ N

count(a, x) = |{j ∈ {0, ..n} | a(j) = x}|

(a) [5] Reverse: The final value of a should be the reverse of its initial value.
(b) [5] Sorted: The final value of a is a nondecreasing sequence of values. I.e.

each item should be greater or equal to all earlier items.

1

(c) [5] Permutation: The final value of a contains the same items as its initial
value, in the same quantities, though perhaps not in the same order.

Q2 [10] Given Σ = {“x” �→ R, “y” �→ R}, implement the following specifi-
cation using a sequence of (nonparallel) assignments.

〈x′ = y ∧ y′ = x〉

Use forward substitution and erasure laws. (Hint use arithmetic operations.)
Q3 [10] Given Σ = {“x” �→ R, “y” �→ R, “z” �→ R}, use the alternation law

(and others) to implement

〈(x < z ∧ y′ = −1) ∨ (x > z ∧ y′ = 1) ∨ (x = z ∧ y′ = 0)〉

Q4 [20] Binary search. Given a constant N > 0 and a constant function

C : {0, .., N}
tot

→ N, that is sorted (nondecreasing). We want to see whether there
is an item of C that equals x. I’ll use the notation C{p, ..r} for the set of items
with indecies in set {p, ..r}, i.e., C{p, ..r} = {k ∈ {p, ..r} ·C(k)}. Suppose we
have variables p, q, r of type N. Our specification is f = 〈(x ∈ C{0, ..N}) = (x = C(p′))〉.
We can ‘generalize’ f as

g = 〈0 ≤ p < r ≤ N ⇒ (x ∈ C{p, ..r}) = (x = C(p′))〉

(a) [5] Find an initialization command i such that f � i; g.
(b) [10] Implement g recursively using an alternation. Try to ensure that

each iteration reduces r − p to roughly half its value. [Hint: Because C is
nondecreasing: If 0 ≤ p < q < r ≤ N and C(q) > x , (x ∈ C{p, ..r}) =
(x ∈ C{p, ..q}) .And if C(q) ≤ x then (x ∈ C{p, ..r}) = (x ∈ C{q, ..r}).] Be sure
to justify each step of your derivation.
(c) [5] Apply (the incomplete version of) the while law to implement g with

a while-command. However you should still informally check that your loop will
terminate, so state a bound expression for the loop.

Q5 [20] Russian peasant multiplication
Suppose x, y, and z are natural number variables. We want to implement:

f = 〈z′ = x× y〉 without using a multiplication.
(a) [5] Find a ‘generalization’ g that will work with the initialization com-

mand z := 0. I.e. we want f � z := 0; g.
(b) [10] Implement g recursively using an alternation. We would like the

time to be proportional to the log2y. You will find the following identities
useful: x× y = x+ x× (y − 1) if y > 0. And x× y = 2× x× y/2 if y is even.
Be sure to justify each step of your derivation.
(c) [5] Apply (the incomplete version of) the while law to implement g with

a while-command. However you should still informally check that your loop will
terminate. State a bound for your loop.

2

