
Assignment 3

Advanced Computing concepts for Engineering

Due 2018 Feb 7

Note that the work that you turn in for this assignment must represent your
individual effort. You are welcome to help your fellow students to understand
the material of the course and the meaning of the assignment questions, however,
the answer that you submit must be created by you alone.
Q0 Decimals

(a) Use the method of invariants to find an efficient iterative solution to the
following problem: Given a sequence of decimal digits in an array, calculate
the corresponding natural number. In particular, let n be a variable holding a
natural number and, let d be variable, holding a sequence of n natural numbers,

implement
〈
x′ =

∑
i∈{0,..n} d(i)× 10

i
〉
. Be sure to clearly state the invariant.

[For this part don’t worry about having exponentiation in your code.]
(b) If your solution to part (a) requires the exponentiation, introduce a track-

ing variable so that the algorithm only requires multiplications and additions.
How does this tracking variable affect the invariant?

(d) If in parts (a) and (b) you processed the array from right to left, repeat
part (a) processing the array from left to right. And conversely.

(e) Repeat part (b) for the algorithm in part (d).
(f) How could you solve this problem without the method of invariants?
Q1 Linked list reversal

Use the method of invariants to find an efficient iterative solution to the
problem of reversing a linked list.

We will represent a linked list by two arrays1 of size n: data and next . The
items of the linked list are in data and the links are in next. Each item of next
is an integer. We’ll use use −1 to represent the end of the list. We can define a
predicate2 isList on integers numbers to be the strongest predicate that satisfies

∀i ∈ {0, ..n} · isList(next(i))⇒ isList(i)

isList(−1)

By saying that isList is the strongest predicate that satisfies these properties,
we mean that the predicate is only true where it must be true to satisfy these

1By array, I just mean a variable that holds a sequence.
2A predicate on natural numbers is just a function from the natural numbers to the

booleans. In this case the predicate is implicitly also a function of a state which defines
the value of next .
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two properties. For example isList(−2) is false, since it does not need to be
true to satisfy these two properties. In a state where next(i) = i, for some
i ∈ {0, ..n}, we would have isList(i) = false, since there would be no way to
show isList(i) = true using only the properties above. In the state

,

we have isList(−1),and so isList(1), and so isList(6), and so isList(5). In fact,
in this state, ∀i ∈ {0, ..8} · isList(i)

We can define a partial function toSeq that extracts the sequence from a
linked list. Like isList , toSeq is implicitly a function of the state. The toSeq
function is only defined when isList is true. We can define toSeq by the equa-
tions.

toSeq(−1) = [ ]

∀i ∈ {0, ..n} · toSeq(i) = [data(i)]ˆtoSeq(next(i))

Here [ ] is a sequence of length 0; [a] is a sequence of length 1; and ˆ concatenates
two sequences. For example, in the state shown above, we have toSeq(−1) = [ ],
and so toSeq(1) = [‘r’], and so toSeq(6) = [‘a’, ‘r’], and so toSeq(6) = [‘m’, ‘a’, ‘r’].

We also need a function that reverses a sequence

reverse([ ]) = [ ]

∀a · reverse([a]ˆs) = reverse(s)ˆ[a]

This function does not depend on the state. For example, reverse([‘m’, ‘a’, ‘r’])
is [‘r’, ‘a’, ‘m’].

We want to reverse the sequence represented by a list. The specification is3

〈
isList(p) ∧ (s = toSeq(p))⇒ isList(q)′ ∧ (reverse(toData(q)′) = s) ∧

(
data = data ′

)〉

Here s is a sequence valued variable that is used for the purpose of speci-
fication. You should not refer to s in your program code. For example, if the

3The use of prime on an expression means the value of that expression in the final state.
Thus isList(q)′ means isList ′(q′) where isList ′ is a function just like isList except that it uses
next ′ instead of next . Similarly for toData(q)′.
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initial state is

,

an acceptable final state is

(a) What invariant can be used?
(b) What initialization statement can be used to make the invariant true.
(c) What loop guard should be used?
(d) What is the specification h of the loop body?
(e) We haven’t covered assignments to individual array items. We can un-

derstand an assignment a(i) := x to mean that we assign to a a value that is
just like its initial value except that item i is x. For example, if in the initial
state a maps to [5, 9, 13] and i is 1, then after executing a(i) := 8, the value of
a would be [5, 8, 13].

What is a loop body that implements the specification h of the body given
in part (d)? [No proof is needed, but you should convince yourself that it refines
h.]

(f) What bound can be used to show that the loop terminates?
Q2. Designing a hardware divider

(a) Apply the abstract binary search algorithm given in notes 0-6 to the
problem

〈r′ = �x/y�〉
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of finding a the integer part of a quotient. The goal set G will be {�x/y�} i.e.,
{z ∈ N | zy ≤ x < (z + 1)y}. You may assume x is a natural number and y is
a positive natural number. Try to eliminate all set operations from the code.
[By the way you, may think that finding the average of two numbers involves
a division by 2, and it does. But division by 2 followed by rounding, requires
only a shift in the binary representation. So, if the numbers are represented
in binary, dividing by 2 followed by rounding is far easier and cheaper than
dividing by an arbitrary positive natural number.]

(b) If the algorithm from part (a) contains any multiplications (other than
by small constants like 2), try to eliminate them by introducing one or more
tracking variables.

(c) Draw the data path of a divider circuit based on your algorithm from
part (b).

(d) Suppose you represent a set {p, ..r} by two numbers p and r, where r−p
is a power of 2. You can also represent such a set by two numbers c and i such
that p = c2i and r = (c+ 1) 2i.Can you modify your algorithm from part b so
that it maintains as an invariant that the size of the search space S is always
a power of 2? If so, data transform the algorithm so that represents the set as
suggested above.

(e) Draw the data path of a divider circuit based on your algorithm from
part (d).
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