
Advanced Computing Concepts for Engineering, 2012. Slide Set 0-1. Input and Output. (c) Theodore Norvell

Input and Output

Dividing behaviours into inputs and outputs

In this course we follow the convention that

• Names of inputs have no primes: x, y, z

• Names of outputs end with a prime: x′, y′, z′

Given a signature, e.g.:

Σ = {“w” �→ A, “x” �→ B, “y′” �→ C, “z′” �→ D}

its input aspect consists only of inputs
←−
Σ = {“w” �→ A, “x” �→ B}

and its output aspect consists only of outputs
−→
Σ = {“y” �→ C, “z” �→ D}

Note: No primes

Similarly for behaviours: if

b = {“w” �→ m, “x” �→ n, “y′” �→ p, “z′” �→ q}

then
←−
b = {“w” �→ m, “x” �→ n}
−→
b = {“y” �→ p, “z” �→ q}

Note: The input and output aspects of the signature are

rather like the source and target of a relation

We can put together signatures and behaviours using

the † operator

{“w” �→ A, “x” �→ B} † {“y” �→ C, “z” �→ D} = Σ

{“w” �→ m, “x” �→ n} † {“y” �→ p, “z” �→ q} = b

1

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-1. Input and Output. (c) Theodore Norvell

Response Set

For any particular input, i :
←−
Σ , which outputs are

acceptable? Define the response set of fΣ for input i as

resp(fΣ, i) �
{
o :
−→
Σ | f(i † o)

}

Note that

f � g iff ∀i :
←−
Σ · resp(f, i) ⊇ resp(g, i)

So the direction of the � symbol might seem a little

confusing at first.

The size of the response set is worth noting

• fΣ is determined, for input i, iff |resp(fΣ, i)| = 1.

• fΣ is underdetermined, for input i, iff |resp(fΣ, i)| > 1.

• fΣ is overdetermined,for input i, iff |resp(fΣ, i)| = 0.

Nondeterminism

A specification is deterministic if it is determined for

every input

∀i :
←−
Σ · |resp(fΣ, i)| = 1

If a specification is not deterministic, it is

nondeterministic

∃i :
←−
Σ · |resp(fΣ, i)| �= 1

Deterministic specifications are essentially total functions

from an input space to an output space

We are interested in nondeterministic specifications

because

• They allow us to not specify aspects that are not

2

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-1. Input and Output. (c) Theodore Norvell

important.

• They allow us to model components that are not

perfectly reliable.

• They allow us to omit quantities from the system

boundary.

• They allow us to freely combine specifications with

operators such as ‘and’ and ‘or’.

3

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-1. Input and Output. (c) Theodore Norvell

Implementability

While being underdetermined for one or more inputs is

not a problem, there is a problem with specifications that

are overdetermined for some inputs.

Such specifications are called unimplementable

∃i :
←−
Σ · resp(fΣ, i) = ∅

Equivalently

∃i :
←−
Σ · ∀o :

−→
Σ · ¬f(i † o)

A specification that is not unimplementable is

implementable

∀i :
←−
Σ · resp(fΣ, i) �= ∅

Equivalently:

∀i :
←−
Σ · ∃o :

−→
Σ · f(i † o)

The job of a system that meets a requirements

specification f is to, for each input, i, select an output o

from resp(f, i).

No physical system can select a behaviour from an

empty set.

So no physical system will meet an unimplementable

specification.

4

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-1. Input and Output. (c) Theodore Norvell

Example:

f = 〈|sin (x)− x′| < 0.001 ∧ x′ ≥ 0〉

This specification requires that the output is

approximately the sine of the input, but also that it

not be negative. This is a contradictory specification. For

example for x = −π
4

there is no suitable value for x′.

Commandment: Thou shalt not write unimplementable

requirements specifications.

5

