
Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Laws of Programming

We will look at various general laws that are helpful in

deriving programs.

‘Universally true’ and ‘Stronger Than’

If a boolean expressionA is true regardless of the values

of its free variables, it is said to be universally true.

Here are some examples of universally true expressions:

true

x ≥ x

x + 42 > x

x ∈ {x, y, z}

p ∧ q ⇒ p

A boolean expression B is considered to be stronger

than a boolean expression A if

B ⇒ A, is universally true

For example

0 < x < y
is stronger than

0 ≤ x ≤ y

If A is stronger than B, we say B is weaker than A.

Some examples

A is stronger than A ∨ B

A is stronger than B ⇒ A

A ∧ B is stronger than A
Typeset January 30, 2017 1

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Monotonicity properties: If B is stronger than A then

B ∧ C is stronger than A ∧ C

B ∨ C is stronger than A ∨ C

C ⇒ B is stronger than C ⇒ A

Anti-monotonicity properties: If B is stronger than A then

¬A is stronger than ¬B

A ⇒ C is stronger than B ⇒ C

(Perhaps we should say “stronger than or the same as”,

but this is a mouthful.)

Strengthening laws

The strengthening law says: If B is stronger than A then

〈A〉 � 〈B〉

Some examples

〈A ∨ B〉 � 〈A〉

〈B ⇒ A〉 � 〈A〉

〈A〉 � 〈A ∧ B〉

Monotonicity properties: If 〈A〉 � 〈B〉 then

〈A ∧ C〉 � 〈B ∧ C〉

〈A ∨ C〉 � 〈B ∨ C〉

〈C ⇒ A〉 � 〈C ⇒ B〉

Anti-monotonicity properties: If 〈A〉 � 〈B〉 then

〈¬B〉 � 〈¬A〉

〈B ⇒ C〉 � 〈A ⇒ C〉

Typeset January 30, 2017 2

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Monotonicity Laws

With the natural numbers, N, the operations of addition

and multiplication are monotonic with respect to ≤: For

example, if p, q, and r are natural numbers, then if p ≤ q,
we have p + r ≤ q + r and p · r ≤ q · r.

Similarly we can say that our programming operators are

monotonic with respect to refinement.

In particular, if f , g, and h are specifications such that

f � g, we have

• f ∧ h � g ∧ h

• f ∨ h � g ∨ h

• h⇒ f � h⇒ g

• f ;h � g;h

• h; f � h; g

• if A then f else h � if A then g else h

• if A then h else f � if A then h else g

• while A do f � while A do g

Typeset January 30, 2017 3

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Skip laws

The following laws follow from the definition of skip and

the strengthening laws

〈x′ = x〉 � skip

〈x′ = x ∧ y′ = y〉 � skip

〈x′ = x ∧ y′ = y ∧ z′ = z〉 � skip

Assignment laws

The following laws follow from the definition of

assignment and the strengthening law

〈x′ = E〉 � x := E

〈x′ = E ∧ y′ = y〉 � x := E

〈x′ = E ∧ y′ = y ∧ z′ = z〉 � x := E

Typeset January 30, 2017 4

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Erasure laws

Erasure law for skip

The above laws for skip and assignment can be

generalized.

Consider x′ ≥ x, this is weaker than x′ = x, we have

〈x′ ≥ x〉 � 〈x′ = x〉 � skip

More generally any expression A will be weaker than

x′ = x if replacing every x′ in A with an x gives a

universally true expression. (This is the one-point law.).

We’ll use the notation Ã to mean the expression A with

all primes removed.

E.g. x̃′ ≥ x is x ≥ x.

In general we have an

Erasure law for skip. 〈A〉 � skip exactly if Ã is

universally true.

Example: 〈x > 0⇒ x′ ≥ 0〉 � skip since x > 0⇒ x ≥ 0
is universally true.

Typeset January 30, 2017 5

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Erasure law for assigment

Consider a state space with integer variables x and y.

We have

x′ = x + 42 ∧ y′ = y
stronger than

x′ > x ∧ y′ ≥ y
since x + 42 > x ∧ y ≥ y is universally true.

In general we have the following

Erasure law for assignment 〈A〉 � V := E exactly if

Ã[V ′ : E] is universally true.

Example 〈x′ = x ∧ y′ = t〉 � y := t since

(x′ = x ∧ y′ = t) [y′ : t] is x′ = x ∧ t = t and since

˜x′ = x ∧ t = t is x = x ∧ t = t which is universally true.

Example 〈x′ = y ∧ y′ = x〉 � x, y := y, x since

(x′ = y ∧ y′ = x) [x′, y′; y, x] is y = y ∧ x = x, which

is universally true.

Typeset January 30, 2017 6

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

The forward substitution law

The following forward substitution law is very useful for

introducing assignment statements into programs

The forward substitution law 〈A[V : E]〉 = (V := E ; 〈A〉)

Example:

Consider refining 〈x′ = 3x + 42 ∧ y′ = 3x + 41〉

〈x′ = 3x + 42 ∧ y′ = 3x + 41〉

� “rewrite 41 as 42− 1”

〈x′ = 3x + 42 ∧ y′ = 3x + 42− 1〉

� “forward substitution”

x := 3x + 42; 〈x′ = x ∧ y′ = x− 1〉

Example:

We can use parallel assignment. Consider g =〈
i ≤ n⇒ s′ = s +

∑

k∈{i,..n}

a(k)

〉

Then 〈
i + 1 ≤ n⇒ s′ = s + a(i) +

∑

k∈{i+1,..n}

a(k)

〉

= Substitution law

i, s := i + 1, s + a(i) ; g

Typeset January 30, 2017 7

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Example: Swap

Consider the following specification

〈x′ = y ∧ y′ = x〉

We will assume that multiple assignments are not

allowed. We’ll also assume that there is a variable t of

appropriate type.

Can we derive a sequential composition of single

assignments that does the job?

〈x′ = y ∧ y′ = x〉

= Forward substitution

t := x ; 〈x′ = y ∧ y′ = t〉

= Forward substitution

t := x ; x := y ; 〈x′ = x ∧ y′ = t〉

� Erasure law for assignment

t := x ; x := y ; y := t

Note how the last step also uses a monotonicity law.

We generally won’t call attention to uses of monotonicity

laws. They are used implicitly.

Typeset January 30, 2017 8

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Backward Substitution

We can also introduce an assignment as the final

statement, using the backward substitution law.

Let E ′ be an expression identical to E except with a prime

added to each variable.

The backward substitution law 〈A〉 �
(〈A[V ′ : E ′]〉 ;V := E)

Example. Consider swapping again. Again, we’ll

assume there is a variable t that we can use.

〈x′ = y ∧ y′ = x〉

� “Backward substitution”

〈x′ = y ∧ t′ = x〉; y := t

� “Backward substitution”

〈y′ = y ∧ t′ = x〉; x := y; y := t

� “Erasure law”

t := x;x := y; y := t

Typeset January 30, 2017 9

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Alternation law

Once we have checked a condition, it can become a

precondition. This idea is captured in the alternation law

f = if A then (〈A〉 ⇒ f) else (¬ 〈A〉 ⇒ f)

Example: Find the minimum

We know that

min(a, b) = a, if a ≤ b (1)

min(a, b) = b, if b ≤ a (2)

Suppose we wish to implement

f = 〈a′ = min(a, b)〉

f

= Alternation law

if a ≤ b then (〈a ≤ b〉 ⇒ f) else (〈a > b〉 ⇒ f)

We can implement the first case as follows

〈a ≤ b〉 ⇒ f

= Defn of f

〈a ≤ b⇒ a′ = min(a, b)〉

= By (1)

〈a ≤ b⇒ a′ = a〉

� Erasure law

skip

Typeset January 30, 2017 10

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

The second case is implemented by

〈a > b〉 ⇒ f

= Defn of f

〈a > b⇒ a′ = min(a, b)〉

� Strengthening〈
a ≥ b⇒ a′ = min(a, b)

〉

= (2)

〈a ≥ b⇒ a′ = b〉

� Erasure law

a := b

Now we have

f

= Alternation law

if a ≤ b then (〈a ≤ b〉 ⇒ f) else (〈a > b〉 ⇒ f)

� Above results

if a ≤ b then skip else a := b

Typeset January 30, 2017 11

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

While law (incomplete version)

One property of the while loop is the following. Let

w = while A do h

then

w = if A then (h;w) else skip

While law (incomplete version): For any g, h, and A,

such that ..., if

g � if A then (h; g) else skip ,

then

g � while A do h
[Later we will complete this law (fill in the “...”) with

additional conditions that ensure it is valid. In the mean

time we will blithely ignore the “such that ...”.]

Summation of an array

For this problem, we calculate the sum of all the elements

in an array of integers a of size n (a natural number)

f =

〈
s′ =

∑

k∈{0,..n}

a(k)

〉

We’ll assume a natural number variable i is in the state

space.

The strategy is to find a generalization of the problem g

that can serve as the specification of a loop:

f

� Substitution law

i, s := 0, 0 ; g

Typeset January 30, 2017 12

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

where

g =

〈
i ≤ n⇒ s′ = s +

∑

k∈{i,..n}

a(k)

〉

Now the problem remaining is to derive a program for g.

In the case where i = n the problem is easy to solve

g

�

if i �= n
then 〈i �= n〉 ⇒ g

else 〈i = n〉 ⇒ g

Typeset January 30, 2017 13

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Tackling the second problem first we have〈
i = n⇒


i ≤ n⇒ s′ = s +

∑

k∈{i,..n}

a(k)



〉

= One point law
〈
i = n⇒


n ≤ n⇒ s′ = s +

∑

k∈{i,..n}

a(k)



〉

= Since n ≤ n is true and true⇒ p is p〈
i = n⇒ s′ = s +

∑

k∈{n,..n}

a(k)

〉

= Since {n, ..n} = ∅〈
i = n⇒ s′ = s +

∑

k∈∅

a(k)

〉

= The sum over an empty set is 0

〈i = n⇒ s′ = s〉

� Erasure law

skip

Typeset January 30, 2017 14

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

In the second case〈
i �= n⇒


i ≤ n⇒ s′ = s +

∑

k∈{i,..n}

a(k)



〉

= Shunting〈
i �= n ∧ i ≤ n⇒ s′ = s +

∑

k∈{i,..n}

a(k)

〉

= Simplify〈
i < n⇒ s′ = s +

∑

k∈{i,..n}

a(k)

〉

= If i < n we can rewrite {i, ..n} as {i} ∪ {i + 1, ..n}〈
i < n⇒ s′ = s +

∑

k∈{i}∪{i+1,..n}

a(k)

〉

= Split the summation〈
i < n⇒ s′ = s + a(i) +

∑

k∈{i+1,..n}

a(k)

〉

= Rewrite the antecedant〈
i + 1 ≤ n⇒ s′ = s + a(i) +

∑

k∈{i+1,..n}

a(k)

〉

= Substitution law

i, s := i + 1, s + a(i) ; g

Typeset January 30, 2017 15

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Putting these results together (with monotonicity) we get

that

g

�

if i �= n
then 〈i �= n〉 ⇒ g

else 〈i = n〉 ⇒ g

� Above calculations

if i �= n
then (i, s := i + 1, s + a(i); g)
else skip

Now we apply the while law

g � while i �= n do i, s := i + 1, s + a(i)

and thus (by monotonicity)

f � i, s := 0, 0;
while i �= n do

i, s := i + 1, s + a(i)

Typeset January 30, 2017 16

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

Greatest Common Denominator

a | b iff natural number a divides natural number b. I.e.

there exists a q ∈ N such that aq = b

The greatest common divisor of two natural numbers

a and b is a natural number gcd(a, b) with the following

properties.

gcd(a, b) | a, for all natural numbers a, b

gcd(a, b) | b, for all natural numbers a, b

if c | a and c | b then c | gcd(a, b),

for all natural numbers a, b, c

From these properties we can derive the following facts

(proof left as exercise)

gcd(a, 0) = a, (3)

for all natural numbers a, where a �= 0

gcd(a, b) = gcd(b, amod b), (4)

for all natural numbers a, b where b �= 0

g = 〈a �= 0 ∨ b �= 0⇒ a′ = gcd(a, b)〉

g

= Alternation

if b �= 0
then 〈b �= 0〉 ⇒ g

else 〈b = 0〉 ⇒ g

Typeset January 30, 2017 17

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

In the second case we have (after shunting)

〈b = 0 ∧ (a �= 0 ∨ b �= 0)⇒ a′ = gcd(a, b)〉

= One point and identity law for ∨

〈b = 0 ∧ a �= 0⇒ a′ = gcd(a, 0)〉

= Fact (3)

〈b = 0 ∧ a �= 0⇒ a′ = a〉

� Erasure law for skip

skip

In the first case we have (after shunting)

〈b �= 0 ∧ (a �= 0 ∨ b �= 0)⇒ a′ = gcd(a, b)〉

= Domination law for ∨

〈b �= 0 ∧ true⇒ a′ = gcd(a, b)〉

= Identity law for ∧

〈b �= 0⇒ a′ = gcd(a, b)〉

= Fact (4)

〈b �= 0⇒ a′ = gcd(b, amod b)〉

� Strengthening (by weakening the antecedent)

〈b �= 0 ∨ amod b �= 0⇒ a′ = gcd(b, amod b)〉

= Substitution law

a, b := b, amod b ; g

Now putting the two cases together we get

g

�

if b �= 0
then a, b := b, amod b ; g
else skip

Typeset January 30, 2017 18

Advanced Computing Concepts for Engineering, 2012 Slide Set 0-3. Derivation. (c) Theodore Norvell

So by the while loop law we have

g � while b �= 0 do a, b := b, amod b

Typeset January 30, 2017 19

