Laws of Programming

We will look at various general laws that are helpful in deriving programs.

'Universally true' and 'Stronger Than'

If a boolean expression \mathcal{A} is true regardless of the values of its free variables, it is said to be **universally true.**

Here are some examples of universally true expressions:

true

$$x \ge x$$

$$x + 42 > x$$

$$x \in \{x, y, z\}$$

$$p \land q \Rightarrow p$$

A boolean expression \mathcal{B} is considered to be **stronger than** a boolean expression \mathcal{A} if

 $\mathcal{B} \Rightarrow \mathcal{A}$, is universally true

For example

0 < x < y

is stronger than

 $0 \le x \le y$

If \mathcal{A} is stronger than \mathcal{B} , we say \mathcal{B} is **weaker than** \mathcal{A} . Some examples

 $\begin{array}{l} \mathcal{A} \text{ is stronger than } \mathcal{A} \lor \mathcal{B} \\ \mathcal{A} \text{ is stronger than } \mathcal{B} \Rightarrow \mathcal{A} \\ \mathcal{A} \land \mathcal{B} \text{ is stronger than } \mathcal{A} \end{array}$

Monotonicity properties: If \mathcal{B} is stronger than \mathcal{A} then

 $\mathcal{B}\wedge\mathcal{C}$ is stronger than $\mathcal{A}\wedge\mathcal{C}$

 $\mathcal{B} \lor \mathcal{C}$ is stronger than $\mathcal{A} \lor \mathcal{C}$

 $\mathcal{C} \Rightarrow \mathcal{B} \text{ is stronger than } \mathcal{C} \Rightarrow \mathcal{A}$

Anti-monotonicity properties: If ${\mathcal B}$ is stronger than ${\mathcal A}$ then

 $\neg \mathcal{A}$ is stronger than $\neg \mathcal{B}$

 $\mathcal{A} \Rightarrow \mathcal{C} \text{ is stronger than } \mathcal{B} \Rightarrow \mathcal{C}$

(Perhaps we should say "stronger than or the same as", but this is a mouthful.)

Strengthening laws

The strengthening law says: If \mathcal{B} is stronger than \mathcal{A} then $\langle \mathcal{A} \rangle \sqsubseteq \langle \mathcal{B} \rangle$

Some examples

Monotonicity properties: If $\langle \mathcal{A} \rangle \sqsubseteq \langle \mathcal{B} \rangle$ then

$$\begin{array}{l} \langle \mathcal{A} \land \mathcal{C} \rangle \ \sqsubseteq \ \langle \mathcal{B} \land \mathcal{C} \rangle \\ \langle \mathcal{A} \lor \mathcal{C} \rangle \ \sqsubseteq \ \langle \mathcal{B} \lor \mathcal{C} \rangle \\ \langle \mathcal{C} \Rightarrow \mathcal{A} \rangle \ \sqsubseteq \ \langle \mathcal{C} \Rightarrow \mathcal{B} \rangle \end{array}$$
Anti-monotonicity properties: If $\langle \mathcal{A} \rangle \sqsubseteq \langle \mathcal{B} \rangle$ then
$$\begin{array}{l} \langle \neg \mathcal{B} \rangle \ \sqsubseteq \ \langle \neg \mathcal{A} \rangle \\ \langle \mathcal{B} \Rightarrow \mathcal{C} \rangle \ \sqsubseteq \ \langle \mathcal{A} \Rightarrow \mathcal{C} \rangle \end{array}$$

Monotonicity Laws

With the natural numbers, \mathbb{N} , the operations of addition and multiplication are *monotonic* with respect to \leq : For example, if p, q, and r are natural numbers, then if $p \leq q$, we have $p + r \leq q + r$ and $p \cdot r \leq q \cdot r$.

Similarly we can say that our programming operators are monotonic with respect to refinement.

In particular, if f, g, and h are specifications such that $f \sqsubseteq g$, we have

- $f \wedge h \sqsubseteq g \wedge h$
- $f \lor h \sqsubseteq g \lor h$
- $\bullet \ h \Rightarrow f \sqsubseteq h \Rightarrow g$
- $\bullet \; f; h \sqsubseteq g; h$
- $\bullet \ h; f \sqsubseteq h; g$
- if \mathcal{A} then f else $h \sqsubseteq$ if \mathcal{A} then g else h
- if \mathcal{A} then h else $f \sqsubseteq$ if \mathcal{A} then h else g
- while \mathcal{A} do $f \sqsubseteq$ while \mathcal{A} do g

Skip laws

The following laws follow from the definition of skip and the strengthening laws

$$\langle x' = x \rangle \sqsubseteq \mathbf{skip} \langle x' = x \land y' = y \rangle \sqsubseteq \mathbf{skip} \langle x' = x \land y' = y \land z' = z \rangle \sqsubseteq \mathbf{skip}$$

Assignment laws

The following laws follow from the definition of assignment and the strengthening law

$$\langle x' = \mathcal{E} \rangle \sqsubseteq x := \mathcal{E}$$

$$\langle x' = \mathcal{E} \land y' = y \rangle \sqsubseteq x := \mathcal{E}$$

$$\langle x' = \mathcal{E} \land y' = y \land z' = z \rangle \sqsubseteq x := \mathcal{E}$$

Erasure laws

Erasure law for skip

The above laws for skip and assignment can be generalized.

Consider $x' \ge x$, this is weaker than x' = x, we have $\langle x' \ge x \rangle \sqsubseteq \langle x' = x \rangle \sqsubseteq \mathbf{skip}$

More generally any expression \mathcal{A} will be weaker than x' = x if replacing every x' in \mathcal{A} with an x gives a universally true expression. (This is the one-point law.). We'll use the notation $\widetilde{\mathcal{A}}$ to mean the expression \mathcal{A} with all primes removed.

E.g. $x' \ge x$ is $x \ge x$.

In general we have an

Erasure law for skip. $\langle A \rangle \sqsubseteq skip$ exactly if \widetilde{A} is universally true.

Example: $\langle x > 0 \Rightarrow x' \ge 0 \rangle \sqsubseteq \text{skip since } x > 0 \Rightarrow x \ge 0$ is universally true.

Erasure law for assigment

Consider a state space with integer variables x and y. We have

$$x' = x + 42 \land y' = y$$

stronger than

$$x' > x \land y' \ge y$$

since $x + 42 > x \land y \ge y$ is universally true.

In general we have the following

Erasure law for assignment $\langle \mathcal{A} \rangle \sqsubseteq \mathcal{V} := \mathcal{E}$ exactly if $\widetilde{\mathcal{A}[\mathcal{V}':\mathcal{E}]}$ is universally true.

Example $\langle x' = x \land y' = t \rangle \sqsubseteq y := t$ since $(x' = x \land y' = t) [y' : t]$ is $x' = x \land t = t$ and since $x' = x \land t = t$ is $x = x \land t = t$ which is universally true. Example $\langle x' = y \land y' = x \rangle \sqsubseteq x, y := y, x$ since $(x' = y \land y' = x) [x', y'; y, x]$ is $y = y \land x = x$, which

is universally true.

The forward substitution law

The following **forward substitution law** is very useful for introducing assignment statements into programs

The forward substitution law $\langle \mathcal{A}[\mathcal{V} : \mathcal{E}] \rangle = (\mathcal{V} := \mathcal{E}; \langle \mathcal{A} \rangle)$

Example:

Consider refining
$$\langle x' = 3x + 42 \land y' = 3x + 41 \rangle$$

 $\langle x' = 3x + 42 \land y' = 3x + 41 \rangle$
 \sqsubseteq "rewrite 41 as $42 - 1$ "
 $\langle x' = \underline{3x + 42} \land y' = \underline{3x + 42} - 1 \rangle$
 \sqsubseteq "forward substitution"
 $x := 3x + 42; \langle x' = x \land y' = x - 1 \rangle$

Example:

We can use parallel assignment. Consider $g = \left\langle i \le n \Rightarrow s' = s + \sum_{k \in \{i,..n\}} a(k) \right\rangle$ Then

$$\left\langle \underline{i+1} \le n \Rightarrow s' = \underline{s+a(i)} + \sum_{k \in \{\underline{i+1}, \dots n\}} a(k) \right\rangle$$

= Substitution law

$$i,s := i+1, s+a(i); g$$

Example: Swap

Consider the following specification

$$\langle x' = y \land y' = x \rangle$$

We will assume that multiple assignments are not allowed. We'll also assume that there is a variable t of appropriate type.

Can we derive a sequential composition of single assignments that does the job?

$$= \frac{\langle x' = y \land y' = x \rangle}{\text{Forward substitution}}$$

$$= x; \langle x' = y \land y' = t \rangle$$

$$= \text{Forward substitution}$$

$$t := x; x := y; \langle x' = x \land y' = t \rangle$$

$$\sqsubseteq \text{ Erasure law for assignment}$$

$$t := x; x := y; y := t$$

Note how the last step also uses a monotonicity law. We generally won't call attention to uses of monotonicity laws. They are used implicitly.

Backward Substitution

We can also introduce an assignment as the final statement, using the **backward substitution law**.

Let \mathcal{E}' be an expression identical to \mathcal{E} except with a prime added to each variable.

The backward substitution law $\langle \mathcal{A} \rangle \sqsubseteq (\langle \mathcal{A}[\mathcal{V}' : \mathcal{E}'] \rangle; \mathcal{V} := \mathcal{E})$

Example. Consider swapping again. Again, we'll assume there is a variable t that we can use.

$$\langle x' = y \land y' = x \rangle$$

⊑ "Backward substitution"

$$\langle x' = y \wedge t' = x \rangle; y := t$$

□ "Backward substitution"

$$\langle y' = y \land t' = x \rangle; x := y; y := t$$

 \sqsubseteq "Erasure law"

$$t := x; x := y; y := t$$

Alternation law

Once we have checked a condition, it can become a precondition. This idea is captured in the alternation law

 $f = \mathbf{if} \ \mathcal{A} \mathbf{then} \ (\langle \mathcal{A} \rangle \Rightarrow f) \mathbf{ else} \ (\neg \langle \mathcal{A} \rangle \Rightarrow f)$

Example: Find the minimum

We know that

$$\min(a,b) = a, \text{ if } a \le b \tag{1}$$

$$\min(a,b) = b, \text{ if } b \le a \tag{2}$$

Suppose we wish to implement

$$f = \langle a' = \min(a, b) \rangle$$

f = Alternation law

if $a \le b$ then $(\langle a \le b \rangle \Rightarrow f)$ else $(\langle a > b \rangle \Rightarrow f)$ We can implement the first case as follows

$$\langle a \leq b \rangle \Rightarrow f$$

= Defn of f
 $\langle a \leq b \Rightarrow a' = \min(a, b) \rangle$
= By (1)
 $\langle a \leq b \Rightarrow a' = a \rangle$
 \sqsubseteq Erasure law
skip

The second case is implemented by

$$\langle a > b \rangle \Rightarrow f$$

= Defn of f
$$\langle \underline{a > b} \Rightarrow a' = \min(a, b) \rangle$$

$$\sqsubseteq \text{ Strengthening}$$
$$\left\langle a \ge b \Rightarrow a' = \underline{\min(a, b)} \right\rangle$$

= (2)
$$\langle a \ge b \Rightarrow a' = b \rangle$$

$$\sqsubseteq \text{ Erasure law}$$
$$a := b$$

Now we have

$$\begin{array}{l}f\\ = & \text{Alternation law}\\ & \text{if } a \leq b \text{ then } (\langle a \leq b \rangle \Rightarrow f) \text{ else } (\langle a > b \rangle \Rightarrow f)\\ & \sqsubseteq & \text{Above results}\\ & \text{if } a \leq b \text{ then skip else } a := b\end{array}$$

While law (incomplete version)

One property of the while loop is the following. Let w =while \mathcal{A} do h

then

 $w = \mathbf{if} \ \mathcal{A} \mathbf{then} \ (h; w) \mathbf{ else skip}$

While law (incomplete version): For any g, h, and A, such that ..., if

$$g \sqsubseteq \mathbf{if} \ \mathcal{A} \mathbf{then} \ (h;g) \mathbf{else skip}$$
 ,

then

 $g \sqsubseteq \mathbf{while} \ \mathcal{A} \ \mathbf{do} \ h$

[Later we will complete this law (fill in the "...") with additional conditions that ensure it is valid. In the mean time we will blithely ignore the "such that ...".]

Summation of an array

For this problem, we calculate the sum of all the elements in an array of integers a of size n (a natural number)

$$f = \left\langle s' = \sum_{k \in \{0, \dots n\}} a(k) \right\rangle$$

We'll assume a natural number variable i is in the state space.

The strategy is to *find a generalization* of the problem g that can serve as the specification of a loop:

$$f \\ \subseteq Substitution law \\ i, s := 0, 0; g$$

where

$$g = \left\langle i \le n \Rightarrow s' = s + \sum_{k \in \{i, \dots n\}} a(k) \right\rangle$$

Now the problem remaining is to derive a program for g. In the case where i = n the problem is easy to solve

$$\begin{matrix} g \\ & \\ \mathbf{if} \ i \neq n \\ & \mathbf{then} \ \langle i \neq n \rangle \Rightarrow g \\ & \mathbf{else} \ \langle i = n \rangle \Rightarrow g \end{matrix}$$

Tackling the second problem first we have

$$\left\langle i = n \Rightarrow \left(i \le n \Rightarrow s' = s + \sum_{k \in \{i,..n\}} a(k) \right) \right\rangle$$

= One point law
$$\left\langle i = n \Rightarrow \left(\frac{n \le n}{n} \Rightarrow s' = s + \sum_{k \in \{i,..n\}} a(k) \right) \right\rangle$$

= Since $n \le n$ is true and true $\Rightarrow p$ is p
$$\left\langle i = n \Rightarrow s' = s + \sum_{k \in \{n,..n\}} a(k) \right\rangle$$

= Since $\{n,..n\} = \emptyset$
$$\left\langle i = n \Rightarrow s' = s + \sum_{k \in \emptyset} a(k) \right\rangle$$

= The sum over an empty set is 0
$$\left\langle i = n \Rightarrow s' = s \right\rangle$$

 \Box Erasure law
skip

In the second case

$$\left\langle i \neq n \Rightarrow \left(i \leq n \Rightarrow s' = s + \sum_{k \in \{i,..n\}} a(k) \right) \right\rangle$$

$$= \text{Shunting}$$

$$\left\langle \underline{i \neq n \land i \leq n} \Rightarrow s' = s + \sum_{k \in \{i,..n\}} a(k) \right\rangle$$

$$= \text{Simplify}$$

$$\left\langle i < n \Rightarrow s' = s + \sum_{k \in \{i\} \cup \{i+1,..n\}} a(k) \right\rangle$$

$$= \text{If } i < n \text{ we can rewrite } \{i,..n\} \text{ as } \{i\} \cup \{i+1,..n\}$$

$$\left\langle i < n \Rightarrow s' = s + \sum_{k \in \{i\} \cup \{i+1,..n\}} a(k) \right\rangle$$

$$= \text{Split the summation}$$

$$\left\langle \underline{i < n} \Rightarrow s' = s + a(i) + \sum_{k \in \{i+1,..n\}} a(k) \right\rangle$$

$$= \text{Rewrite the antecedant}$$

$$\left\langle \underline{i + 1} \leq n \Rightarrow s' = \underline{s + a(i)} + \sum_{k \in \{i+1,..n\}} a(k) \right\rangle$$

$$= \text{Substitution law}$$

$$i, s := i + 1, s + a(i); g$$

Putting these results together (with monotonicity) we get that

Greatest Common Denominator

 $a \mid b$ iff natural number a divides natural number b. I.e. there exists a $q \in \mathbb{N}$ such that aq = b

The greatest common divisor of two natural numbers a and b is a natural number gcd(a, b) with the following properties.

 $gcd(a, b) \mid a$, for all natural numbers a, b

 $gcd(a, b) \mid b$, for all natural numbers a, b

if $c \mid a$ and $c \mid b$ then $c \mid gcd(a, b)$,

for all natural numbers a, b, c

From these properties we can derive the following facts (proof left as exercise)

gcd(a, 0) = a,for all natural numbers a, where $a \neq 0$ $gcd(a, b) = gcd(b, a \mod b),$ for all natural numbers a, b where $b \neq 0$ $g = \langle a \neq 0 \lor b \neq 0 \Rightarrow a' = gcd(a, b) \rangle$ (3)

$$g$$
= Alternation
if $b \neq 0$
then $\langle b \neq 0 \rangle \Rightarrow g$
else $\langle b = 0 \rangle \Rightarrow g$

In the second case we have (after shunting) $\langle b = 0 \land (a \neq 0 \lor b \neq 0) \Rightarrow a' = \gcd(a, b) \rangle$ $= \text{ One point and identity law for } \lor$ $\langle b = 0 \land a \neq 0 \Rightarrow a' = \gcd(a, 0) \rangle$ = Fact (3) $\langle b = 0 \land a \neq 0 \Rightarrow a' = a \rangle$ $\sqsubseteq \text{ Erasure law for skip}$ skip
In the first case we have (after shunting)

$$\langle b \neq 0 \land (a \neq 0 \lor b \neq 0) \Rightarrow a' = \gcd(a, b) \rangle$$

= Domination law for
$$\vee$$

$$\langle b \neq 0 \land \mathfrak{true} \Rightarrow a' = \gcd(a, b) \rangle$$

$$=$$
 Identity law for \land

$$\langle b \neq 0 \Rightarrow a' = \gcd(a, b) \rangle$$

$$=$$
 Fact (4)

$$\langle b \neq 0 \Rightarrow a' = \gcd(b, a \bmod b) \rangle$$

- $\sqsubseteq \text{ Strengthening (by weakening the antecedent)} \\ \langle b \neq 0 \lor a \mod b \neq 0 \Rightarrow a' = \gcd(b, a \mod b) \rangle$
- Substitution law

$$a, b := b, a \mod b; g$$

Now putting the two cases together we get

$$\begin{array}{c} g \\ & \sqsubseteq \\ & \mathbf{if} \ b \neq 0 \\ & \mathbf{then} \ a, b := b, a \operatorname{mod} b ; g \\ & \mathbf{else \ skip} \end{array}$$

So by the while loop law we have $g \sqsubseteq \mathbf{while} \ b \neq 0 \ \mathbf{do} \ a, b := b, a \mod b$