Laws of Programming

We will look at various general laws that are helpful in
deriving programs.

‘Universally true’ and ‘Stronger Than’

If a boolean expression A is true regardless of the values
of its free variables, it is said to be universally true.
Here are some examples of universally true expressions:

true

Tr>x

r+42 >

re{x,y, 2}

pANq=1p
A boolean expression B is considered to be stronger
than a boolean expression A if

B = A, is universally true

For example

D<ax <y
IS stronger than

0<z<y
If A is stronger than B, we say B is weaker than A.
Some examples

A is stronger than AV B
A is stronger than B = A
A A Bis stronger than A



Monotonicity properties: If B is stronger than A then
B A C is stronger than A A C
B Vv C is stronger than AV C
C = Bis strongerthan C = A
Anti-monotonicity properties: If B is stronger than .4 then
—-A is stronger than =3
A = C is stronger than B = C

(Perhaps we should say “stronger than or the same as”,
but this is a mouthful.)

Strengthening laws

The strengthening law says: If B is stronger than A then
(A) E (B)

Some examples

(AV B)

(B= A)

(A)

Monotonicity properties: If (A)

IBRIENIE
TETE

>

=

(B) then

(ANC) E (BAC)
(AVC) C (BVC)
(C=A) C (C=D8)
Anti-monotonicity properties: If (A) C (B) then
(=B) C (~A)
(B=C) C (A=20C)



Monotonicity Laws

With the natural numbers, N, the operations of addition
and multiplication are monotonic with respect to <: For
example, if p, g, and r are natural numbers, then if p < g,
wehavep+r<qg+randp-r <gq-r.

Similarly we can say that our programming operators are
monotonic with respect to refinement.

In particular, if f, g, and h are specifications such that
f C g, we have

e fARC gAhD

e fVhEgVh

eh=fCh=yg

e f[ih T g;h

o h;fChig

o if Athen f else h C if A then g else h
o if A then h else f C if A then h else g
e while A do f C while A do g



SKkip laws

The following laws follow from the definition of skip and
the strengthening laws

(' =x) C skip
(' =x Ny =y) C skip
(@' =xNy =yANzZ=2) C skip

Assignment laws

The following laws follow from the definition of
assignment and the strengthening law

(=& C x:=¢
('=ENY =y) C z:=E&
(' =ENY =yNZ=2)C x:=E¢



Erasure laws
Erasure law for skip

The above laws for skip and assignment can be
generalized.

Consider 2’ > z, this is weaker than ' = x, we have
(2 > 2) C (2 = z) C skip

More generally any expression A will be weaker than

' = x if replacing every 2z’ in A with an z gives a

universally true expression. (This is the one-point law.).

We'll use the notation A to mean the expression A with
all primes removed.

Eg. 2 >xisx > .
In general we have an

Erasure law for skip. (A) C skip exactly if A is
universally true.

Example: (x > 0= 2" >0) Cskipsincex >0= x>0
IS universally true.



Erasure law for assigment

Consider a state space with integer variables x and .
We have

¥=x+ 42Ny =y
stronger than

T >c ANy >y

since x + 42 > x Ay > y Is universally true.
In general we have the following
Erasure law for assignment (A4) C V := £ exactly if
A[V' : £] is universally true.
Example (z'=xz Ay =t) C y = t since
(x’:/@y’:t)[y’ tlis2’ = x At =t and since
¥=xNt=tisx=x At=twhichis universally true.
Example (' =y Ay =2) C z,y := y,x since
(' =yANy =x) |2, y;y,x]isy = y Az = z, which
Is universally true.




The forward substitution law

The following forward substitution law is very useful for
introducing assignment statements into programs

The forward substitution law (A[V : &]) = (V =&, (A))

Example:

Consider refining (x' = 3z + 42 Ay = 3z + 41)
(' =3z +42 Ny =3z +41)
C “rewrite 41 as 42 — 17
(@' =3z + 42Ny =3z +42—1)
C “forward substitution”
v:=3x+42; (7' =ax ANy =2 —1)

Example:

We can use parallel assignment. Consider g =

<i<n=>s’—8+ Z a(k)>

ke{i,.n}
Then

<i+1§n:>5’s+a(i)+ Z a(k)>

ke{i+1,.n}
— Substitution law

i,s =1+ 1,s+a(i);g



Example: Swap

Consider the following specification

(@' =y Ny =)
We will assume that multiple assignments are not
allowed. We'll also assume that there is a variable ¢ of
appropriate type.
Can we derive a sequential composition of single
assignments that does the job?

(@' =y Ny =)
= Forward substitution
t=x;(x'=yANy =1)
Forward substitution
t=x:x:=y;{x' =Ny =1)
C Erasure law for assignment
t=x:x:=y;y =t
Note how the last step also uses a monotonicity law.

We generally won't call attention to uses of monotonicity
laws. They are used implicitly.




Backward Substitution

We can also introduce an assignment as the final
statement, using the backward substitution law.

Let £’ be an expression identical to £ except with a prime
added to each variable.

The backward substitution law (A) C
((AV &), V=€)
Example. Consider swapping again. Again, we'll
assume there is a variable t that we can use.

(o' =y Ny =)

C “Backward substitution”

(' =yNt =zx)y =t

C “Backward substitution”
"=yAt' =a) =gy =t
C “Erasure law”
L =x,0 .=y y =

S




Alternation law

Once we have checked a condition, it can become a
precondition. This idea is captured in the alternation law

f=if Athen ((A) = f) else (- (A) = f)
Example: Find the minimum

We know that
min(a,b) = a,ifa <b (1)
min(a,b) = b,ifb<a (2)
Suppose we wish to implement
f = (a' = min(a, b))
f
= Alternation law
if a <bthen ((a <b) = f) else ((a >b) = f)
We can implement the first case as follows
(a <b)= f
= Defn of f
(a < b= a =min(a,b))
= By (1)
(a <b=d =a)
C Erasure law
skip



The second case is implemented by
(a >b) = f
= Defnof f
(a > b= a' = min(a,b))
C Strengthening
<a > b = a = min(a, b)>
- (2)
(a>b=d =Db)
C Erasure law
a:=1b

Now we have

f

= Alternation law
if a < bthen ((a <b) = f) else ((a > b) = f)

C Above results
if a < bthen skipelsea: =10



While law (incomplete version)

One property of the while loop is the following. Let
w = while A do h
then
w = if A then (h;w) else skip
While law (incomplete version): For any ¢, h, and A,
such that ..., if
g C if A then (h;g) else skip,
then
g C while A do h
[Later we will complete this law (fill in the “...”) with
additional conditions that ensure it is valid. In the mean
time we will blithely ignore the “such that ...” ]

Summation of an array

For this problem, we calculate the sum of all the elements
in an array of integers a of size n (a natural number)

f= <5’ = Z a(k)>
ke{0,..n}
We’'ll assume a natural number variable i is in the state
space.
The strategy is to find a generalization of the problem g
that can serve as the specification of a loop:

f

C Substitution law
1,5 :=0,0;¢



where

g= <7L§n:>s’s+ Z a(k)>
ke{i,.n}
Now the problem remaining is to derive a program for g.

In the case where i = n the problem is easy to solve

g
L
if i #£n
then (i #n) =g
else (i=n)=g



Tackling the second problem first we have

<i—n:> i<n=5=s5+ Z a(k) >

ke{i,.n}
= One point law

<7Ln:> n<n=3s=s+ Z a(k) >

ke{i,.n}
= Since n < nistrue and ttue = pis p

<7Ln:>s’s+ Z a(k)>

ke{n,.n}
= Since {n,.n} =10

<in:>s’s+2a(k)>

= The sum over an empty set is 0
(i=n=5=s)

C Erasure law
skip




In the second case

<i7én:> i<n=s=s+ Z a(k) >

ke{i,.n}
= Shunting
<i#n/\i<n¢s’—s+ Z a(k)>
ke{i,.n}
= Simplify
<i<n:>s’s+ Z a(k)>
ke{i,.n}

= If i < n we can rewrite {i,.n}as {i}U{i+1,.n}

<i<n:>s’s+ Z a(k)>

ke{ifu{i+1,..n}
= Split the summation

<i<_n:> s'=s+ali)+ Z a(k)>

kel{i+1,.n}

= Rewrite the antecedant

<i+1§n:>5’s+a(i)+ Z a(k)>

ke{itl, n}

— Substitution law
i,s =1+ 1,s+al(i);g



Putting these results together (with monotonicity) we get
that

g

I

if 2 #n
then (i #£n) =g
else (i=n)=g
C Above calculations
if 2 #n
then (i,s:=i+1,s+a(i); g)
else skip
Now we apply the while law
g Ewhilei #ndoi,s: =1+ 1,5+ a(i)
and thus (by monotonicity)
fC 1,s:=00;
while i #4 n do
i,s =1+ 1,5+ a(1)



Greatest Common Denominator

a | b iff natural number « divides natural number b. l.e.
there exists a ¢ € N such that ag = b

The greatest common divisor of two natural numbers
a and b is a natural number ged(a, b) with the following
properties.

ged(a, b) | a, for all natural numbers a, b
ged(a, b) | b, for all natural numbers a, b
if c| aand c | bthen c | ged(a,b),

for all natural numbers a, b, c

From these properties we can derive the following facts
(proof left as exercise)

ged(a, 0) = a, (3)
for all natural numbers a, where a # 0
ged(a, b) = ged(b, amodb), 4)

for all natural numbers a, b where b # 0
g={a#0Vb+#0= d = ged(a,b))

g
= Alternation
if b#£0
then (b+#£0) =g
else (b=10)=g¢



In the second case we have (after shunting)
(b=0A(a#0Vb=#0)=d =ged(a,b))
= One point and identity law for Vv
(b=0ANa#0=d =ged(a,0))
= Fact (3)
(b=0ANa#0=d =a)
C Erasure law for skip
skip
In the first case we have (after shunting)
(b£0A(a#0Vb#0)=d =gcd(a,b))
= Domination law for V
(b# 0 A teue = o' = ged(a, b))
= ldentity law for A
(b#£0=a = ged(a,b))
= Fact (4)
(b#£ 0= a = ged(b,amod b))
C Strengthening (by weakenlng the antecedent)
(b=#£0Vamodb=# 0= a' = ged(b,amodb))
= Substitution law
a,b:=0b,amodb ;g
Now putting the two cases together we get

g
L
if b # 0
then a,b:=0,amodb ;g
else skip



So by the while loop law we have
g C while b # 0 do a,b := b,amod b



