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More on Iteration

In order to use while loops in programming, we need to

be able to prove statements such as

g � while A do h

So we need to know under what conditions this

refinement holds.

Earlier we saw an incomplete law

While law (incomplete version): For any g, h, and A,

such that ... if

g � if A then (h; g) else skip

then

g � while A do h

But we still need to fill in the “...”

It turns out that what is missing is that we must require

the loop to terminate.
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Loop Termination

Consider two loops where x is a natural number program

variable

while x > 0 do x := x− 1
and

while x �= n do x := x + 1
The first definitely terminates, while the second may not.

How can we show that a loop terminates?

In the first case we can state a bound on the number of

remaining iterations. Namely x. At any point, there can

not be more than x iterations left. In the second case we

can not do this.

If we can find a bound for a loop, then it always

terminates.

A better iteration law

While law (better version): For any g, h, and A, such

that while A do h always terminates, if

g � if A then (h; g) else skip

then

g � while A do h

An even better iteration law

In practice, we do not require that loops terminate

regardless of the initial state. We only require that they

terminate when started in states that matter.
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For example, we would expect that for an integer i

〈i ≤ n⇒ i′ = n〉 � while i �= n do i := i + 1

even though, the loop does not terminate when started

with an initial value of i that is larger than n.

To show this sort of refinement we need an even better

law.

We will use a program variable τ of type Z to count the

number of repetitions of a loop.

Let us strengthen the example specification to include

information about the maximum number of repetitions

allowed

g = 〈(i ≤ n⇒ i′ = n ∧ τ ′ ≤ τ + (n− i))〉

Now we show

g � if i �= n then (i := i + 1; τ := τ + 1; g) else skip
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While law (final version): For any g, h, and A, where

g is of the form 〈P ⇒ Q ∧ τ ′ ≤ τ + E〉 and E is a natural

number expression, if

g � if A then (h; τ := τ + 1; g) else skip

then

g � while A do h

(E is called the bound for the loop.)

Practically, what this means is that when A and E > 0
are true initially, h needs to decrease the value of E by at

least 1.
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Summation revisited

In the summation problem above we had to refine
〈

i ≤ n⇒ s′ = s +




∑

k∈{i,..n}

a(k)




〉

with a loop. In that case the bound can be n − i, so we

should refine〈

i ≤ n⇒ s′ = s +




∑

k∈{i,..n}

a(k)



 ∧ τ ′ ≤ τ + n− i

〉

by a while loop.

GCD revisited

In the GCD problem we had to refine

〈a �= 0 ∨ b �= 0⇒ a′ = gcd(a, b)〉

in this case we can use b as the bound. We can show

that

〈a �= 0 ∨ b �= 0⇒ a′ = gcd(a, b) ∧ τ ′ ≤ τ + b〉

is implemented by

while b �= 0 do a, b := b, amod b
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Defining Iteration

Although I’ve stated some laws about iteration, we can’t

prove these laws yet, as we haven’t actually defined

iteration.

We can define

while A do h
to be the least refined specification w such that

if A then (h;w) else skip � w

That is to say that (0)

if A then (h;w) else skip � w

and, (1)

for any f , if if A then (h; f) else skip � f then w � f

From this definition, we can show the above laws for

iteration.
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