
Advanced Computing Concepts for Engineering, 2010. Slide Set 0-4. Iteration (c) Theodore Norvell

More on Iteration

In order to use while loops in programming, we need to

be able to prove statements such as

g � while A do h

So we need to know under what conditions this

refinement holds.

Earlier we saw an incomplete law

While law (incomplete version): For any g, h, and A,

such that ... if

g � if A then (h; g) else skip

then

g � while A do h

But we still need to fill in the “...”

It turns out that what is missing is that we must require

the loop to terminate.

Typeset January 26, 2010 1



Advanced Computing Concepts for Engineering, 2010. Slide Set 0-4. Iteration (c) Theodore Norvell

Loop Termination

Consider two loops where x is a natural number program

variable

while x > 0 do x := x− 1
and

while x �= n do x := x + 1
The first definitely terminates, while the second may not.

How can we show that a loop terminates?

In the first case we can state a bound on the number of

remaining iterations. Namely x. At any point, there can

not be more than x iterations left. In the second case we

can not do this.

If we can find a bound for a loop, then it always

terminates.

A better iteration law

While law (better version): For any g, h, and A, such

that while A do h always terminates, if

g � if A then (h; g) else skip

then

g � while A do h

An even better iteration law

In practice, we do not require that loops terminate

regardless of the initial state. We only require that they

terminate when started in states that matter.

Typeset January 26, 2010 2



Advanced Computing Concepts for Engineering, 2010. Slide Set 0-4. Iteration (c) Theodore Norvell

For example, we would expect that for an integer i

〈i ≤ n⇒ i′ = n〉 � while i �= n do i := i + 1

even though, the loop does not terminate when started

with an initial value of i that is larger than n.

To show this sort of refinement we need an even better

law.

We will use a program variable τ of type Z to count the

number of repetitions of a loop.

Let us strengthen the example specification to include

information about the maximum number of repetitions

allowed

g = 〈(i ≤ n⇒ i′ = n ∧ τ ′ ≤ τ + (n− i))〉

Now we show

g � if i �= n then (i := i + 1; τ := τ + 1; g) else skip

Typeset January 26, 2010 3



Advanced Computing Concepts for Engineering, 2010. Slide Set 0-4. Iteration (c) Theodore Norvell

While law (final version): For any g, h, and A, where

g is of the form 〈P ⇒ Q ∧ τ ′ ≤ τ + E〉 and E is a natural

number expression, if

g � if A then (h; τ := τ + 1; g) else skip

then

g � while A do h

(E is called the bound for the loop.)

Practically, what this means is that when A and E > 0
are true initially, h needs to decrease the value of E by at

least 1.

Typeset January 26, 2010 4



Advanced Computing Concepts for Engineering, 2010. Slide Set 0-4. Iteration (c) Theodore Norvell

Summation revisited

In the summation problem above we had to refine
〈

i ≤ n⇒ s′ = s +




∑

k∈{i,..n}

a(k)




〉

with a loop. In that case the bound can be n − i, so we

should refine〈

i ≤ n⇒ s′ = s +




∑

k∈{i,..n}

a(k)



 ∧ τ ′ ≤ τ + n− i

〉

by a while loop.

GCD revisited

In the GCD problem we had to refine

〈a �= 0 ∨ b �= 0⇒ a′ = gcd(a, b)〉

in this case we can use b as the bound. We can show

that

〈a �= 0 ∨ b �= 0⇒ a′ = gcd(a, b) ∧ τ ′ ≤ τ + b〉

is implemented by

while b �= 0 do a, b := b, amod b

Typeset January 26, 2010 5



Advanced Computing Concepts for Engineering, 2010. Slide Set 0-4. Iteration (c) Theodore Norvell

Defining Iteration

Although I’ve stated some laws about iteration, we can’t

prove these laws yet, as we haven’t actually defined

iteration.

We can define

while A do h
to be the least refined specification w such that

if A then (h;w) else skip � w

That is to say that (0)

if A then (h;w) else skip � w

and, (1)

for any f , if if A then (h; f) else skip � f then w � f

From this definition, we can show the above laws for

iteration.

Typeset January 26, 2010 6


