
Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Choosing invariants and guards

(This slide set is based on work by David Gries.)

When using the method of invariants to develop a loop

we have

〈B〉 the specification to be implemented

I the invariant condition

〈I ⇒ B〉 the specification of the loop

〈B〉 � m; 〈I ⇒ B〉 where m establishes the invariant

A is the loop guard (another condition)

I ∧ ¬A ⇒ B̃ so that 〈I ∧ ¬A ⇒ B〉 � skip

〈I ⇒ B〉 � while A do h where h the loop body

h must reestablish the invariant

starting in a state such that I ∧ A

h must decrease some bound expression E

Typeset March 1, 2017 1



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Deleting a conjunct — square root revisited

When B is a conjunction B0∧B1 we can take one conjunct

of B̃ as the invariant I and the negation of the remaining

conjunct as the guard A.

I should be easy to establish in the first place and A
should be easy to check.

Example. In the square root example we had

y′2 ≤ x < (y′ + 1)2 as B .

This has two conjuncts y′2 ≤ x and x < (y′ + 1)2.

Take y2 ≤ x as I and x < (y + 1)2 as ¬A.

It is easy to establish I by setting y very low.

y := 0 ;
// Inv. y2 ≤ x
while x ≥ (y + 1)2 do

given x ≥ (y + 1)2, reduce x− (y + 1)2

while maintaining y2 ≤ x

Typeset March 1, 2017 2



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Replacing a constant by a variable —

summation redone

Let’s revisit summing an array. Let n be constant and a

and array {0, ..n} → R

B is

〈
s′ =

∑

k∈{0,..n}

a(k)

〉

We can replace the constant n with a variable i and

erase primes (we also put a range on the variable) to get

I is

〈
0 ≤ i ≤ n ∧ s =

∑

k∈{0,..i}

a(k)

〉

Now g =〈
0 ≤ i ≤ n ∧ s =



∑

k∈{0,..i}

a(k)


⇒ s′ =




∑

k∈{0,..n}

a(k)



〉

The ¬A needs to say that we have got back to B. That is

A is i �= n.

Now I is easy to establish with i, s := 0, 0. Our program

so far is

i, s := 0, 0 ;
// Inv. 0 ≤ i ≤ n ∧ s =

∑
k∈{0,..i} a(k)

while i �= n do
given i �= n, reduce n− i while maintaining

0 ≤ i ≤ n ∧ s =
∑

k∈{0,..i}

a(k)

Typeset March 1, 2017 3



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Exercise: Show that s, i := s + a(i), i + 1 reestablishes

the invariant while reducing the bound.

The bound is n− i.

Note. We could equally well have replaced the 0 this

would give

I is

〈
0 ≤ i ≤ n ∧ s =

∑

k∈{i,..n}

a(k)

〉

A is i �= 0, m = (i, s := n, 0), and h =
(s, i := s + a(i− 1), i− 1)

Typeset March 1, 2017 4



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Replacing an expression by a variable —

general binary search

The expression we replace with a variable, need not be

a constant.

A rising edge is a point k where a(k − 1) = false but

a(k) = true.

Consider searching a boolean sequence a for an rising

edge.

To ensure there is a rising edge, we’ll assume

a(−1) = false and a(n) = true.

We will assume that a has domain {−1, .., n}.

Aside: If it is also known that a has one edge, then the

final value of k will be the minimum such that a(k). A

result of k = 0 means a(j), for all j ∈ {0, ..n}, while a

result of k = n means ¬a(j), for all j ∈ {0, ..n}. There is

one edge when a is monotone

j ≤ i⇒ (a(i)⇒ a(j)) , for all i, j ∈ {0, ..n}

(end aside.)

Our specification is 〈¬a(k′ − 1)) ∧ a(k′) ∧ 0 ≤ k′ ≤ n〉.

To form the invariant, erase primes and replace the

expression k − 1 with a variable i.

We have

I is ¬a(i) ∧ a(k) ∧ −1 ≤ i < k ≤ n

which means there is a rising edge somewhere in the

interval {i + 1, .., k}.

This invariant is easy to establish with i, k := −1, n.
Typeset March 1, 2017 5



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

When i = k − 1, we have ¬a(k − 1) ∧ a(k) and we are

done, so A is i < k − 1.

The bound is the size of the interval. Our algorithm so far

is

i, k := −1, n ;
// Inv. ¬a(i) ∧ a(k) ∧ −1 ≤ i < k ≤ n
while i < k − 1 do

given i < k − 1, reduce k − i while maintaining

¬a(i) ∧ a(k) ∧ −1 ≤ i < k ≤ n

// ¬a(i) ∧ a(k) ∧ k = i + 1

Aside: In the case where there is one edge, we also

know that at the end

i = max {j ∈ {−1, ..n} | ¬a(j}

k = min {j ∈ {0, .., n} | a(j)}

Exercise: Find a body that gives the most efficient

algorithm possible.

Typeset March 1, 2017 6



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Enlarging the range of a variable — general

linear search

Consider searching a boolean sequence again.

This time we are seeking the first true value. I.e. we wish

to compute

〈k′ = min {j ∈ {0, .., n} | a(j)}〉

Again we assume a(n), so that the problem is well

defined.

Let m = min {j ∈ {0, .., n} | a(j)} .We have

〈k′ = m〉

or

〈m ≤ k′ ≤ m〉

To find the invariant, we erase primes and enlarge the

range of k so that the invariant is easy to establish. Let I
be

0 ≤ k ≤ m
Note that 0 ≤ m. Thus k := 0 establishes the invariant.

For any i, if a(i) is true then m ≤ i.

If the invariant is true and so is a(k) then we are done as

we have both

k ≤ m from the invariant and

m ≤ k from a(k)

And so let A be ¬a(k).

Typeset March 1, 2017 7



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

The code so far is

k := 0 ;
// Inv. 〈0 ≤ k ≤ m〉, where

m = min {j ∈ {0, .., n} | a(j)}

while ¬a(k) do
given ¬a(k), reduce m− k while maintaining

0 ≤ k ≤ m

If k ≤ m = min {j ∈ {0, .., n} | a(j)} , then either a(k)
or k + 1 ≤ m. Since we’ve ruled out a(k), we know

k + 1 ≤ m and that means k := k + 1 reestablishes the

invariant.

Typeset March 1, 2017 8



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Applying algorithmic schemes

Linear search

The last algorithm we developed is called the linear

search scheme.

We’ll assume a(n) = true and m is

min {j ∈ {0, .., n} | a(j)}

〈k′ = m〉
�
k := 0 ;
// Inv. 〈0 ≤ k ≤ m〉,
while ¬a(k) do k := k + 1

We can apply data transformation to use this scheme to

solve many different problems.

For example if we are searching an array b ∈ {0, ..n} → S

for some item x ∈ S.

Our problem is 〈k′ = m〉 where

m = min {j ∈ {0, .., n} | j = n ∨ b(j) = x}

Define a(j) = (j = n ∨ b(j) = x), for all j ∈ {0, .., n} so

that

m = min {j ∈ {0, .., n} | a(j)}

Typeset March 1, 2017 9



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Now

〈k′ = m〉
� “Linear search scheme”

k := 0 ;
// Inv. 〈0 ≤ k ≤ m〉
while ¬a(k) do k := k + 1

� “Definition of a”

k := 0 ;
// Inv. 〈0 ≤ k ≤ m〉,
while k �= n ∧ b(k) �= x do k := k + 1

Typeset March 1, 2017 10



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

Binary Search

The algorithm we developed to illustrate replacing an

expression with a variable is the binary search scheme

Let a(−1) = false and a(n) = true.

〈¬a(k′ − 1)) ∧ a(k′) ∧ 0 ≤ k′ ≤ n〉
�
i, k := −1, n ;
// Inv. ¬a(i) ∧ a(k) ∧ −1 ≤ i < k ≤ n
while i < k − 1 do

let j ∈ {0, ..n} | j =
⌊
i+k
2

⌋
·

// i < j < k

if a(j) then k := j else i := j

We will apply it to solve a classic search problem.

Suppose b is a monotone function on {0, ..n}, i.e.

i ≤ j ⇒ b(i) ≤ b(j), for all i, j ∈ {0, ..n}

We are seeking the smallest value of k such that

b(k) ≥ x, if there isn’t one, the answer is n.

Define

a(j) = (j = n ∨ j ≥ 0 ∧ b(j) ≥ x) , for all j ∈ {−1, .., n}

Note that a(−1) = false and a(n) = true and there is

exactly one edge.

Thus the binary search scheme finds the smallest k such

that a(k) is true.

Typeset March 1, 2017 11



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6-a Choosing invariants and guards. (c) Theodore Norvell

〈k′ = min {j ∈ {0, .., n} | j = n ∨ b(j) ≥ x}〉
� “Definition of a”

〈k′ = min {j ∈ {0, .., n} | a(j)}〉
� “There is one edge”

〈¬a(k′ − 1) ∧ a(k′) ∧ 0 ≤ k′ ≤ n〉
� “Binary search scheme”

i, k := 0, n ;
// Inv. ¬a(i) ∧ a(k) ∧ −1 ≤ i < k ≤ n
while i < k − 1 do

let j ∈ {0, ..n} | j =
⌊
i+k
2

⌋
·

// i < j < k

if a(j) then k := j else i := j
� “Definition of a”

i, k := 0, n ;

// inv.




(i = −1 ∨ b(i) < x)
∧ (k = n ∨ b(k) ≥ x)
∧ −1 ≤ i < k ≤ n




while i < k − 1 do
let j ∈ {0, ..n} | j =

⌊
i+k
2

⌋
·

// i < j < k

if b(j) ≥ x then k := j else i := j

Typeset March 1, 2017 12




