Choosing invariants and guards

(This slide set is based on work by David Gries.)

When using the method of invariants to develop a loop
we have

(B) the specification to be implemented

7 the invariant condition

(I = B) the specification of the loop

(B) C m; (Z = B) where m establishes the invariant

A is the loop guard (another condition)

I A-A= B sothat (ZA—-A= B) C skip

(I = B) C while A do h where h the loop body

h must reestablish the invariant

starting in a state suchthat Z A A
h must decrease some bound expression £



Deleting a conjunct — square root revisited

When B is a conjunction 5, A5, we can take one conjunct
of B as the invariant Z and the negation of the remaining
conjunct as the guard A.

7 should be easy to establish in the first place and A
should be easy to check.

Example. In the square root example we had
y2<az<(y+1)7asB.

This has two conjuncts y2 < z and = < (y' + 1)°.
Take y2 <z asZ and z < (y +1)* as = A.

It is easy to establish Z by setting y very low.

y:=0;

//nv. ? < x

while z > (y 4+ 1)* do
given = > (y + 1), reduce = — (y + 1)°
while maintaining y* < «



Replacing a constant by a variable —
summation redone

Let’s revisit summing an array. Let n be constant and a
and array {0,.n} — R

Bis <5’— Z a(k)>
ke{0,..n}
We can replace the constant n with a variable : and

erase primes (we also put a range on the variable) to get

Tis <O§i§n/\s Z a(k)>

ke{0,..i}
Now g =

<O§i§n/\s Z alk) | = ¢ = Z a(k) >

ke{0,..i} ke{0,..n}
The —A needs to say that we have got back to B. That is
Ais i #£ n.
Now 7 is easy to establish with i, s := 0, 0. Our program
so faris

1,5 :=0,0;
V. 0 <@ <nAs=3 ;. alk)
while i #4 n do
given i # n, reduce n — ¢ while maintaining
0<i<nAs= Z a(k)
ke{0,..i}



Exercise: Show that s,7 := s+ a(i),7 + 1 reestablishes
the invariant while reducing the bound.
The bound is n — .

Note. We could equally well have replaced the 0 this
would give

Tis <O<i<n/\3— Z a(k)>

ke{i,.n}
Ais i # 0, m = (i,s:=n,0), and h =
e i .



Replacing an expression by a variable —
general binary search

The expression we replace with a variable, need not be
a constant.

A rising edge is a point k£ where a(k — 1) = false but
a(k) = true.

Consider searching a boolean sequence a for an rising
edge.

To ensure there is a rising edge, we’ll assume
a(—1) = false and a(n) = true.

We will assume that ¢ has domain {—1, .., n}.

Aside: If it is also known that ¢ has one edge, then the
final value of £ will be the minimum such that a(k). A
result of £ = 0 means a(j), for all j € {0,..n}, while a

result of £ = n means —a(yj), for all j € {0,..n}. There is
one edge when a is monotone

j<i=(a(i) = a(j)), foralli,je {0,.n}
(end aside.)
Our specification is (—a(k’ — 1)) A a(k') A0 < K < n).
To form the invariant, erase primes and replace the
expression k£ — 1 with a variable .
We have

Tis—a(t)Na(k)N—-1<i<k<n

which means there is a rising edge somewhere in the
interval {¢ + 1, .., k}.
This invariant is easy to establish with ¢, k := —1, n.



When i = k£ — 1, we have —a(k — 1) A a(k) and we are
done,so Aisi < k — 1.
The bound is the size of the interval. Our algorithm so far
IS

i, k=—1,n;:
/1Inv. =a(i) Na(k) AN—=1<i<k<mn
while: < £ —1do

given i < k — 1, reduce k — ¢+ while maintaining
—a(i) Nalk)N—=1<i<k<n

Il ma(i) Na(k) Nk =1+ 1

Aside: In the case where there is one edge, we also
know that at the end

i = max{j € {—1,..n} | —a(j}

ko= min{j €{0,..,n} [a(j)}
Exercise: Find a body that gives the most efficient
algorithm possible.



Enlarging the range of a variable — general
linear search

Consider searching a boolean sequence again.

This time we are seeking the first true value. l.e. we wish
to compute

(K'=min{j € {0,..,n} | a(j)})
Again we assume a(n), so that the problem is well
defined.
Let m =min{j € {0,..,n} | a(j)} .We have

(k' =m)
or
(m <K <m)
To find the invariant, we erase primes and enlarge the
range of k so that the invariant is easy to establish. Let Z
be
0<k<m

Note that 0 < m. Thus k := 0 establishes the invariant.
For any ¢, if a(7) is true then m < .
If the invariant is true and so is a(k) then we are done as
we have both

k < m from the invariant and

m < kfrom a(k)
And so let A be —a(k).



The code so far is

k:=0;
/' Inv. (0 < k < m), where
m = min {j € {0,...n} | a(j)}
while —a(k) do
given —a(k), reduce m — k while maintaining
0<k<m

If £ < m =min{j €{0,...,n} |a(j)}, then either a(k)
or k+1 < m. Since we've ruled out a(k), we know
k 4+ 1 < m and that means k£ := k + 1 reestablishes the
invariant.



Applying algorithmic schemes

Linear search

The last algorithm we developed is called the linear
search scheme.

We'll assume a(n) = true and m is
min {j € {0,..,n} | a(j)

(K =m)
L
k:=0;
/' Inv. (0 < k& < m),
while —a(k)do k =k +1

We can apply data transformation to use this scheme to
solve many different problems.

For example if we are searchinganarray b € {0,.n} — S
for someitemz € S.
Our problem is (k' = m) where
m =min{j € {0,..,n}|j7=nVb(y)=2a}
Define a(j) = (j =nVb(j) =x), forall j € {0,..,n} so
that
m=min{j € {0,..,n} | a(j)}



Now

(k' =m)
C “Linear search scheme”
k:=0:
//'lnv. (0 < k < m)
while —a(k)do k =k +1
C “Definition of a”
k:=0;:
/' Inv. (0 < k < m),
while k #n Ablk) #xdok =k+1



Binary Search

The algorithm we developed to illustrate replacing an
expression with a variable is the binary search scheme

Let a(—1) = false and a(n) = true.

(ma(K'—1)ANa(E)ANO < K <n)
C
1, k=—-1,n;
/1nv. —a(i) Na(k) AN =1 <i<k<mn
while i < k£ —1do
let j € {0,..n} | j = |2]-
i <jg <k
if a(j) then k .= j else i :=j

We will apply it to solve a classic search problem.

Suppose b is a monotone function on {0, ..n}, i.e.
i <j=0b3)<0b(j),foralli,je{0,.n}

We are seeking the smallest value of £ such that
b(k) > x, if there isn’t one, the answer is n.
Define

a(j)=(=nVji>0ADby)>x),foralje{-1,. ,n}
Note that a(—1) = false and a(n) = true and there is
exactly one edge.

Thus the binary search scheme finds the smallest k& such
that a(k) is true.



(k' =min{j €{0,..,n} | j=nVb(y) > x})
C “Definition of a”
(k" =min{j € {0,..,n} [a(j)})
C “There is one edge”
(ma(k'— 1) ANa(K) N0 <K <n)
C “Binary search scheme”
1, k:=0,n:
/1nv. =a(i) Na(k) AN =1 <i<k<mn
while7 < £k —1do
let j € {0,..n} | j = | 2]
i <j <k
if a(j) then k .= j elsei :=j
C “Definition of a”
1, k=0,n;
(2=—1Vb(i) < x)
/linv.| A (k=nVbk)>x)
N—-1<i1<k<n
while? < £k —1do
let j € {0,..n} | j = | 2]
i <jg <k
if b(j) > x then k := j elsei =





