
Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

Invariants

Square root

Suppose x is a natural number. We wish to find the

integer part of its square root.

f =
〈
y′2 ≤ x < (y′ + 1)2

〉

=
〈
y′2 ≤ x ∧ x < (y′ + 1)2

〉

If we have already searched the first y natural numbers

we know y2 ≤ x.

Let’s introduce that as an loop invariant

I is y2 ≤ x
g = (〈I〉 ⇒ f)

Apart from primes, the invariant is one conjunct of the

original specification. We have

f � y := 0; g
If we use the other conjunct (negated) as the loop guard

we get

g � if (y + 1)2 ≤ x then g0 else g1
where the else-clause is

g1 =
〈
y2 ≤ x < (y + 1)2 ⇒ y′2 ≤ x < (y′ + 1)2

〉

We have a specification of the form 〈A ⇒ B〉 such that

A is the same as B̃.

By the erasure law, such a specification can always be

implemented by skip.

For the "then" clause we have:

Typeset February 8, 2017 1

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

g0 =
〈
I ∧ (y + 1)2 ≤ x⇒ y′2 ≤ x < (y′ + 1)2

〉

We need to find a specification h so that

g0 � h; g
The following will do

h =
〈
I ∧ (y + 1)2 ≤ x⇒ I ′ ∧ x′ = x

〉

where I ′ is the same as I, but with primes:

I ′ is y′2 ≤ x′
The key point about h is that its job is to preserve the

invariant.

h = 〈I ∧ · · · ⇒ I ′ ∧ · · · 〉
That is, if it starts in a state where I holds, it must end in

a state where I holds.

h

= By definition〈
I ∧ (y + 1)2 ≤ x⇒ I ′ ∧ x′ = x

〉

� Strengthening and assignment laws

y := y + 1

Typeset February 8, 2017 2

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

The method of loop invariants

Let’s try to separate the method used to solve the last

problem, from the details of the problem.

The general form of the solution is

f � m; g

g � while A do h
The key to the method is the notion of an invariant I,

which is a condition on the initial state.

• Suppose f = 〈B〉 and B depends on a list of input

variables x̄.

• We generalize f = 〈B〉 to g = 〈I ⇒ B〉
• The role of the initialization statementm, is to establish

the invariant, that is to make I true at the start of the

loop. This suggests

〈I ′〉
However, that is not enough, m must not change any

of the variables x̄ whose initial value is used in B.

m = 〈I ′ ∧ x̄′ = x̄〉
• Exercise: Show that f � m; g
• Now we turn our attention to implementing g =
〈I ⇒ B〉 with while A do h.

• The negation of the guardA together with the invariant

should ensure that B is implemented by skip. That is

I ∧ ¬A ⇒ B̃, is universally true

(We can often use this formula to decide on I.)

Typeset February 8, 2017 3

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

• The role of the loop’s body h is to preserve the

invariant ; that is

〈I ⇒ I ′〉
We can assume that A is true to start with, so h needs

to implement

〈A ∧ I ⇒ I ′〉
However, h should not change variables whose initial

value is used in B. We have

h = 〈A ∧ I ⇒ I ′ ∧ x̄′ = x̄〉
• To ensure termination, the loop’s body should also

decrease the bound.

• Exercise: show that g � 〈A〉 ⇒ (h; g)

Typeset February 8, 2017 4

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

More on Invariants

A slightly faster (and smaller) square root

Consider the square root problem

f =
〈
y′2 ≤ x < (y′ + 1)2

〉

and its solution

I is y2 ≤ x
g = (〈I〉 ⇒ f)

f � y := 0; g

g � while (y + 1)2 ≤ x do y := y + 1
On many computers, multiplications are slow. In

hardware, multipliers are large, slow, or both.

Do we really need to multiply?

Introduce a new variable z and redefine the invariant as

I : y2 ≤ x ∧ z = (y + 1)2
As before define

g = (〈I〉 ⇒ f)

Now we must change the two places where the invariant

is established. Note that

(y + 2)2 = y2 + 4y + 4 = (y + 1)2 + 2(y + 1) + 1

We get

f � y, z := 0, 1; g

g � while z ≤ x
do y, z := y + 1, z + 2(y + 1) + 1

Typeset February 8, 2017 5

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

Although there is still a multiplication by 2, such a

multiplication is fast in software and trivial in hardware.

(Just shift the binary representation to the left.)

[Exercise: Do this derivation in detail.]

Typeset February 8, 2017 6

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

Square Root by Binary Search

The number of iterations required above is still �√x�.
[The notation �a�, for a ∈ R, means the largest integer

not larger than a. I.e. i ≤ �a� iff i ≤ a, for all integers i.
Equivalently we have �a� < i iff a < i, for all integers i
and real numbes a. (As an exercise, prove these these

definitons are equivalent.)]

Can we do better?

Rewrite f as

f =
〈
y′2 ≤ x < (y′ + 1)2

〉

= Monotonicity of squaring nonnegative reals〈
y′ ≤ √x < y′ + 1

〉

= Facts about floor〈
y′ ≤

⌊√
x
⌋
< y′ + 1

〉

Invariant

We obtain (another) I by replacing the expession y′ + 1
with a new variable, z, and erasing primes.

I : y ≤
⌊√
x
⌋
< z

g =
〈
I ⇒ y′ ≤

⌊√
x
⌋
< y′ + 1

〉

0 · · · · · · �√x� · · · · · · x + 1
↑ ↑
y z

In terms of sets I = (�√x� ∈ {y, ..z})

Typeset February 8, 2017 7

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

Initialization

It is a fact that, for all x ∈ N
0 ≤

⌊√
x
⌋
< x + 1

So

f � y, z := 0, x + 1; g
0 · · · �√x� · · · x + 1

↑ ↑
y z

Guard

When z = y + 1 , then g is done〈
z = y + 1 ∧ I ⇒ y′ ≤

⌊√
x
⌋
< y′ + 1

〉
� skip

So use z �= y + 1 as the loop guard. Given the invariant,

this is the same as z > y + 1.
0 · · · �√x� · · · x + 1

↑ ↑
y z

Preserving the invariant

We need a body that refines

h = 〈I ∧ z > y + 1⇒ I ′ ∧ x′ = x〉
[Before looking at the next page, try to find such a body.

Try to cut z − y approximately in half in the body.]

Typeset February 8, 2017 8

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

At the start of the body, z − y is at least 2, so �(z − y)/2�
is at least 1.

Let w stand for y + �(z − y) /2�.
Note y < w < z. We have {y, ..z} = {y, ..w} ∪ {w, ..z}
From I we have �√x� ∈ {y, ..w} ∨ �√x� ∈ {w, ..z}
If w ≤ �√x� then we can set y to w

0 · · · · · · · · · �√x� · · · · · · x + 1
↑ ↑ ↑
y w z

If w > �√x� then we can set z to w
0 · · · · · · �√x� · · · · · · · · · x + 1

↑ ↑ ↑
y w z

In both cases the bound z − y is decreased by at least

one

We have

〈I ∧ z > y + 1⇒ I ′ ∧ x′ = x〉
� if w ≤ �√x�
then y := w
else z := w

[Exercise: check this in detail.]

But, we can’t use the test w ≤ �√x� as we can’t calculate

�√x�
(If we could easily calculate �√x� there wouldn’t be any

point designing this agorithm.)

Can we find an equivalent expression?
Typeset February 8, 2017 9

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

w ≤
⌊√
x
⌋

= Since w is an integer

w ≤ √x
= Squaring both sides.

w2 ≤ x
The final algorithm is

f

� y, z := 0, x + 1;
// inv. y ≤ �√x� < z
while z > y + 1
do let w = y + �(z − y) /2� ·

if w2 ≤ x
then y := w
else z := w

Typeset February 8, 2017 10

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

Binary Search

The invariant says the desired answer is in the set

{y, y + 1, ..., z − 1}. We call this set the “search space”

In each iteration of the loop, we reduce the size of the

search space by roughly 2. This technique is called

“binary search”.

Since the size of the search space is roughly halved with

each iteration, and the initial size of the search space is

x, the number of iterations is roughly log2 x.

For large x, log2 x is considerably smaller than
√
x.

Consider x = 1012 ∼= 240.√x = 106. log2 x ∼= 40

Typeset February 8, 2017 11

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

Data Transformation

In both the above solutions we augmented the state

space with a variable z and constrained the relationship

of z to the other variables by strengthening the invariant.

This is an example of a data transformation. In a

data transformation, we replace one set of variables

with another while specifying an invariant relationship

between the two state spaces.

In both examples we replaced {“x”, “y”} with {“x”, “y”,“z”}
the added relationships being

z = (y + 1)2

and

y ≤
⌊√
x
⌋
< z

respectively.

A challenge:

The Square Root by Binary Search algorithm above

still has a multiplication operation in each iteration. For

hardware implementation, this will use up considerable

time and area, for software implementation, it uses time.

Can you eliminate the multiplication in the Square Root

by Binary Search?

Hint: Use data transformation.

• Add one or more variables to track quantities that are

expensive to calculate.

• Strengthen the invariant to indicate the relationship

between these variables and the quantities they track.
Typeset February 8, 2017 12

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

A Nondeterministic ‘if’ Statement.

Before we go on, I’d like to introduce a new kind of ‘if’

statement.

if A then f
� B then g
else h

This means

• if A is true and B is false, execute f

• if A is false and B is true, execute g

• if both A and B are true, execute either f or g

• if neither are true, execute h.

The semantics is

(〈A〉 ∧ f) ∨ (〈B〉 ∧ g) ∨ (〈¬A ∧ ¬B〉 ∧ h)
As long as A∨B is universally true, we can leave out the

else part.

Furthermore, in that case, we have

if A then f � B then g � if A then f else g

Typeset February 8, 2017 13

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

An Abstract Binary Search algorithm

We can abstract away from the particulars of the

square root problem to obtain a general seach problem.

Suppose G is a constant, nonempty, “goal set”. (In our

square root application G is {�√x�}.)
By constant, I mean that it does not depend on any

variables that are changed.

We wish to find at least one member of the goal set.

f = 〈S ′ ⊆ G ∧ S′ �= ∅〉
We can abstract away from the particulars of the solution

to the square root problem to obtain an Abstract Binary

Search algorithm. The key is the invariant, which says

that a set variable S always contains at least one member

of the goal set.

I : S ∩G �= ∅
g = 〈I ⇒ f〉
f � S := some set such that S ∩G �= ∅ ; g
g � while |S| > 1

do let S0,S1 | S0 ∪ S1 = S·
if S0 ∩G �= ∅ then S := S0
� S1 ∩G �= ∅ then S := S1

Typeset February 8, 2017 14

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-6 Invariants (c) Theodore Norvell

Note that either S0 ∩G �= ∅ or S1 ∩G �= ∅ or both since

S0 ∩G �= ∅ ∨ S1 ∩G �= ∅
= De Morgan

¬ ((S0 ∩G = ∅) ∧ (S1 ∩G = ∅))
= Since A = ∅ ∧B = ∅ iff A ∪B = ∅
¬ ((S0 ∩G) ∪ (S1 ∩G) = ∅)

= Distributivity

¬ ((S0 ∪ S1) ∩G = ∅)
= Since S0 ∪ S1 = S
= ¬ (S ∩G = ∅)

Definition of I
I

The loop bound is the size of S, so we should ensure that

both S0 and S1 are smaller than S. For efficiency it is best

if S0 and S1 are disjoint (S0 ∩ S1 = ∅) and approximately

the same size. In that case the loop will iterate Θ(log |S|)
times.

Applying the Abstract Binary Search Algorithm

The Square Root by Binary Search algorithm can be

obtained from the Abstract Binary Search Algorithm by

the following data transform

G =
{⌊√

x
⌋}

S = {y, ..z}
S0 = {y, ..w}
S1 = {w, ..z}

where w = y + �(z − y) /2�
Typeset February 8, 2017 15

