
Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Strings, Languages, and Regular

Expressions

Strings

An alphabet set S is simply a nonempty set of things.

We will call these things symbols.

A finite string of length n over an alphabet S is a total

function from {0, ..n} to S.

Examples.

• Suppose S = {‘a’, ‘b’, ‘c’}. (A set of three characters.)

Then the following function is a finite string of length 3
over S.

({0, 1, 2} , S, {0 �→ ‘a’, 1 �→ ‘b’, 2 �→ ‘b’, })

We’ll also write this string as [‘a’, ‘b’, ‘b’] .

• Suppose S = {‘a’, ‘b’, ‘c’}. Then the following function

is a finite string of length 0 over S.

(∅, S, ∅)

We will also write this string (and any other string of

length 0) as [] or as ε or as “”.

When S is a set of characters, I’ll use double quotes to

indicate strings

Example: So [‘a’, ‘b’, ‘b’] = “abb”.

February 24, 2020 1

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

For each n ∈ N the set of strings of length n over S is

Sn =
(
{0, ..n}

tot
→ S

)

If s ∈ Sn, we say that its length is n and write ‖s‖ = n.

Examples

• Suppose S = {0, 1} then S2 is

{[0, 0] , [0, 1] , [1, 0] , [1, 1]}

• ‖“aabb”‖ = 4

The set of finite strings over S is

S∗ =
⋃
n ∈ N·Sn

Example Suppose S = {‘a’, ‘b’} then S∗ is

{ε, “a”, “b”, “aa”, “ab”, “ba”, “bb”, “aaa”, · · · }

Note that while the size of S∗ is infinite (even for finite S),

the length of each element of S is finite.

We can concatenate two strings s and t to get a string sˆt.
Such that

sˆt ∈ S‖s‖+‖t‖ and thus

‖sˆt‖ = ‖s‖ + ‖t‖ . Furthermore

(sˆt) (i) = s(i), if 0 ≤ i < ‖s‖ , and

(sˆt) (‖s‖ + i) = t(i), if 0 ≤ i < ‖t‖

• Note the ε is the identity element of catenation sˆε = s =
εˆs, for all s.

February 24, 2020 2

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Letter conventions for this section of the

course

I’ll use variables as follows

S an alphabet

a, b, c ∈ S

s, t, w ∈ S∗

M,N ⊆ S∗

x, y regular expressions over S

Q a set of states

p, q, r ∈ Q

R,F ⊆ Q

T a set of transitions

February 24, 2020 3

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Languages

A language over S is any subset of S∗.
We can extend the operation of concatenation to languages.

IfM and N are languages over S.

MˆN = {s ∈M, t ∈ N · sˆt}

For example if

M = {“a”, “aa”, “ab”} and N = {ε, “b”} then

MˆN = {“a”, “aa”, “ab”, “aab”, “abb”}

For each i ∈ N we define M i to be MˆMˆ · · · ˆM where

there are i Ms.

For example, if

M = {“a”, “aa”, “ab”} then

M 1 = {“a”, “aa”, “ab”}

M 2 = {“aa”, “aaa”, “aab”,“aaaa”, “aaab”,“aba”, “abaa”, “abab”}

M 3 = {“aaa”, “aaaa”, “aaab”,“aaaaa”, “aaaab”,“aaba”,
“aabaa”, “aabab”, “aaaaaa”, “aaaaab”,“aaaba”,
“aaabaa”, “aaabab”, “abaa”, “abaaa”, “abaab”,

“abaaaa”, “abaaab”,“ababa”, “ababaa”, “ababab”}

By convention,M0 is {ε}. So we can defineM i by

M0 = {ε}

M i+1 = MˆM i, for all i ∈ N

February 24, 2020 4

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

M0 = {ε}

M i+1 = MˆM i, for all i ∈ N

We can define the Kleene closure M∗ of a set of strings as

the set of all finite strings that can be generated from its

members by catenation. So ifM = {“a”,“bb”} then

M∗ = {ε, “a”, “bb”, “aa”, “abb”, “bba”, “bbbb”,
“aaa”, “aabb”, “abba”, “abbbb”,
“bbaa”, “bbabb”, “bbbba”, “bbbbbb”, · · · }

Formally we can define

M∗ =
⋃
i ∈ N·M i

To put it differently, a finite string s is a member of M∗ iff

there is a sequence of 0 or more strings

s0, s1, · · · , sn ∈M

such that

s = s0ˆs1ˆ · · · ˆsn

February 24, 2020 5

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Regular languages

Given an alphabet S, we can make the following simple

regular languages:

• ∅— the empty language; contains no strings

• {ε}— the language that contains only the empty string

• For each a ∈ S, {[a]} — the languages of single, length

1 strings.

Example: If S = 0, 1} we have the following 4 simple

regular languages

∅, {ε} , {[0]} , {[1]}

Given that M and N are languages over S, consider three

ways to make languages

• Union: M ∪ N — the language that contains all strings

either inM or in N

• Concatenation: MˆN — the language of strings s that

can be split into two parts s = tˆw, where t ∈ M and

w ∈ N .

• Kleene closure: M ∗— the language of strings s that can

be split into some number (including 0) of parts, each of

which is inM .

February 24, 2020 6

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Examples: If S is {0, 1} :

• The following are simple regular languages

∅, {ε} , {[0]} , {[1]}

• We can make the following languages out of the simple

regular languages using only union, concatentation, and

Kleene closure:

∗ {[0]} ∪ {[1]} ∪ {ε} = {ε, [0], [1]}

∗ {[0]} ˆ {[1]} = {[0, 1]}

∗ {[0]}∗ = {ε, [0], [0, 0], [0, 0, 0], . . .}

∗ {[0]}∗ ∪ {[1]}∗ = {ε, [0], [1], [0, 0], [1, 1], . . .}

∗ {[0]}∗ ˆ {[1]}∗ = { ε
[0], [1],
[0, 0], [0, 1], [1, 1],
[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1], . . .}

February 24, 2020 7

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

A regular language over S is any language that be made

from simple regular languages over S using a finite number

of applications of the three operators ∪, ˆ, and ∗.

Recap:

• Simple languages:

∗ ∅ is a regular language

∗ {ε} is a regular languages

∗ For each a ∈ S, {[a]} is a regular language.

• IfM and N are regular languages, then so are

∗M ∪N , MˆN , andM∗.

The restriction to finite applications is important. Let

S = {0, 1}. We can see that

• {[0]}, {[1, 0, 1]}, {[1, 1, 0, 1, 1]} and so on are all regular

languages.

• In general, for each i ∈ N, Mi = {[1]}
i ˆ {[0]} ˆ {[1]}i is

a regular language

• {[0]} ∪ {[1, 0, 1]} ∪ {[1, 1, 0, 1, 1]} is a regular language.

• In general, for each n ∈ N,
⋃

i∈{1,..n}

Mi is a regular

language.

• But we should not conclude that⋃

i∈N

Mi = {[0]} ∪ {[1, 0, 1]} ∪ {[1, 1, 0, 1, 1]} ∪ · · ·

is regular. (And in fact it is not.)

Next we look at a language for describing regular languages.

February 24, 2020 8

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Regular expressions

A regular expression over S is a string that describes a

regular language over S.

The symbols of our regular expressions over S will consist

of copies of the symbols of S and 7 special symbols.

The set of regular expressions over S is itself a language

over S ∪ {ε, ∅, |, ;, ∗, (,)} where S is a set consisting of the

symbols in S underlined.

Syntax:

• For each a ∈ S, [a] is a regular expression

• [ε] is a regular expression.

• [∅] is a regular expression.

• If x and y are regular expressions then so are

∗ [(]ˆxˆ [|]ˆ yˆ[)] (alternation)

∗ [(]ˆxˆ [;]ˆ yˆ[)] (concatenation)

∗ [(]ˆxˆ [∗]ˆ[)] (repetition)

February 24, 2020 9

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Some examples: For S = {0, 1}, the following are all

regular expressions over S.

[0]
[1]
[ε]
[∅]
[(, 0, | , 1,)]

[(, 0, ; , 1,)]

[(, 0, ∗,)]

[(, 0, ; , (, 1, ∗,),)]

[(, (, 0, ; , (, 1, ∗,),), | , (, 0, ; , 1,),)]
Underlining convention: An underlined sequence of symbols

is a regular expression.

• We’ll write the above examples, as follows

0
1
ε
∅
(0 | 1)

(0; 1)
(0∗)

(0; 1∗)

((0; (1∗)) | (0; 1))

• I’ve underlined regular expressions to make it clear that

that is what they are. For example ε is a string of length

1 in the language of regular expressions, whereas ε is a

string of length 0.

February 24, 2020 10

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

• This convention creates an ambiguity between regular

expressions of length 1 and symbols. E.g., the expression

0 could mean the symbol 0 or the string (and regular

expression) [0].It should be clear from context which is

meant.

February 24, 2020 11

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Semantics

We can define the “meaning” of regular expressions over an

alphabet S by defining a functionL from regular expressions

to languages over S.

• L(a) = {[a]}, for each a ∈ S.

• L(ε) = {ε}

• L(∅) = ∅

• If x and y are regular expressions then

∗ L((x;y)) = L(x)ˆL(y)

∗ L((x | y)) = L(x) ∪ L(y)

∗ L((x∗)) = (L(x))∗

If s ∈ L(x) we say that x describes s or that x recognizes s.

• What language is L
(
((0; (1∗)) | (0; 1))

)
?

Two regular expression are equivalent if they describe the

same language.

If x is a regular expression then L(x) is a regular language.

Every regular language is described by a regular expression.

February 24, 2020 12

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Parentheses

• Outermost parentheses can be omitted.

∗ ((0; (1∗)) | (0; 1)) can be written (0; (1∗)) | (0; 1)

• Other parentheses can be omitted with the understanding

that ∗ has higher precedence than ; and that ; has higher

precedence than |. Thus:

∗ 0; (1∗) can be abbreviated by 0; 1∗

∗ (0; 1)∗ needs its parentheses

∗ (0; 1∗) | (0; 1) can be abbreviated by 0; 1∗ | 0; 1

∗ (0 | 1) ; (0∗ | 1∗) needs its parentheses.

• We can write x; y; z to mean (x; y); z.

• We can write x | y | z to mean (x | y) | z.

• Redundant parentheses can be added:

∗ (0 | (1∗)) can be written as (((0) | ((1)∗))).

(The operators |, ; and ∗ are analogous to +, ×, and

exponentiation both in precedence and in some algebraic

properties.)

February 24, 2020 13

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Examples

Money

Suppose that S =
{‘$’,‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’,‘,’,‘.’,‘-’}
We want to describe strings representing amounts of money

such as

“$0.05”

“$-12,345.67”

We can describe a set of strings representing amounts of

money as follows. Let x represent the regular expression

(‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’)

The regular expression

y = ‘$’; (‘-’ | ε); (x;x;x|x;x|x); (‘,’;x;x;x)∗; ‘.’;x;x

is such that “$0.05” ∈ L(y) and “$-12,345.67” ∈ L(y),
whereas “$12345.67” /∈ L(y) and “$12.6” /∈ L(y), etc.

More conventions and abbreviations

We leave off the underline when it is clear we are talking

about a regular expression

February 24, 2020 14

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

R.E. Abbreviates Describes . . .

x y x; y catenation

s s(0)s(1) · · · s(‖s‖ − 1) {s}
x+ xx∗ any catenation of 1 or more

strings, each described by x.

xn xx...x︸ ︷︷ ︸
n times

any catenation of n, each

described by x.

xnm xm | xm+1 | · · · | xn any catenation of fromm to n
strings, each described by x.

x? ε | x a string described by x or ε.
. a | b | · · · any string of length one.

[a− b] any string of length one with

a character

alphabetically between a and

b inclusive.

With these abbreviations

‘$’; (‘-’ | ε); (x;x;x|x;x|x); (‘,’;x;x;x)∗; ‘.’;x;x ,

where x is (‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’),
can be written as

‘$’ ‘-’? [‘0’− ‘9’]3
1
(‘,’ [‘0’− ‘9’]3)∗ ‘.’ [‘0’− ‘9’]2

The abbreviations are useful in application of regular

expressions.

However, any abbreviated regular expression can be

rewritten to one that just uses our 6 ways of making a

regular language. When dealing with the theory of regular

expressions, we can safely ignore the abbreviations.

February 24, 2020 15

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Examples

Identifiers

Suppose that

S = {‘_’,‘0’,‘1’,. . . ,‘9’,‘a’,‘b’,. . . ,‘z’,‘A’,‘B’,. . . ,‘Z’} then

let A be the regular expression

([‘a’− ‘z’] | [‘A’− ‘Z’] | ‘_’)([‘a’− ‘z’] | [‘A’− ‘Z’] | [‘0’− ‘9’] | ‘_’)∗

describes C++ identifiers.

Parity

Let S = {0, 1}. Define a regular expression that matches

only strings with an even number of 1s.

(‘0’∗ ‘1’ ‘0’∗ ‘1’)∗ ‘0’*

String search

Let S = {‘_’,‘0’,‘1’,. . . ,‘9’,‘a’,‘b’,. . . ,‘z’,‘A’,‘B’,. . . ,‘Z’}.

Define an r.e. that matches all strings that contain the

substring “engi”.

Now the regular expression is

.∗“engi”.∗

More string searches

Does a document contain any of the strings “woman”,

“women”, “man”, “men” ?

.∗ (“woman” | “women” | “man” | “men”) .∗

or, equivalently,

.∗“wo”?‘m’ (‘a’ | ‘e’) ‘n’.∗

February 24, 2020 16

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Does a document contain “John” followed by “Smith”

.∗ (“John”) .∗ (“Smith”) .∗

Challenges

• A C comment is a string that follows the following

rules. C comments have at least 4 characters. The first

two are “/*” and the last two are “*/”. The sequence

“*/” does not occur in between the first two and last

two characters. Examples include “/**/”, “/*/*/”, and

“/*o*o/*/” . Counter examples include “o/**/”, “/**/o”,

and “/**/*/”. Suppose x is a regular expression whose

language is the set of all strings of length 1 other than “/”

and “*”. Devise a regular expression whose language is

the set of all C comments.

• Let s� be the string s in reverse andM� = {s ∈M · s�}.

Write an algorithm that, given a regular expression x,

computes a regular expression y such thatL(y) = L(x)�.

• Represent an addition such as 2 + 3 = 5 by “235” and

12 + 35 = 47 by “134257”. Pad the operands with 0s so

that both operands and the result are the same number of

digits; e.g., represent 23 + 777 = 800 by “078270370”.

Thus strings in the language are always of lengths that are

multiples of 3.Create a regular expression that represents

correct additions in binary. Hint: it might be easier to

create a regular expression for the reversed language.

Examples

∗ 11 + 101 = 1000 is represented by a string

February 24, 2020 17

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

001 010 100 110 which is in the language.

∗ 11 + 11 = 110 is represented by a string 001 111 110
which is in the language

∗ 1 + 1 �= 1 and so 111 is not in the language.

∗ 00000 is not in the language, as its length is not a

multiple of 3.

February 24, 2020 18

Advanced Computing Concepts Slide Set 1-1. Regular Expressions and Finite Recognizers Theodore Norvell

Regular languages (again)

A languageM is a regular language exactly if there exists a

regular expression x such thatM = L(x).
So far we have seen that some languages are regular.

Perhaps not surprisingly, there are also languages that are

not regular. In the next section of the course we will see that

a language is regular exactly if it can be recognized by a

program that has a fixed amount of memory.

Consider the following language

M =
⋃
i ∈ N· {“a”}i ˆ {“b”}i

= {ε, “ab”, “aabb”, “aaabbb”, · · · }

A program to recognize this language would somehow need

to count the number of a’s and b’s. This would take an

amount of memory that depends on the size of the input; i.e.

it is not fixed. So this language is not regular. The preceding

argument is not a formal proof; after learning a bit more, we

will be in a position to be able to formally prove that some

languages are not regular.

February 24, 2020 19

