
Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Finite Automata

Plan. We will define a kind of Finite Automaton called a

finite recognizer. (FR)

• Given a regular expression we can create an equivalent

nondeterministic FR (Thompson’s construction)

• Given a nondeterministic FR, we can create a determin-

istic FR (subset construction)

• Given a nondeterministic FR, we can create a regular

expression

Together these results will show that regular expressions,

deterministic finite recognizers, and nondeterministic finite

recognizers are three formalisms that define the same set of

language.

This set is called the regular languages

February 27, 2018 1

theo
Pencil

theo
Pencil

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Nondeterministic Finite State

Recognizers

We will define a kind of finite state automaton for defining

languages.

Syntax

A Nondeterministic Finite State Recognizer (NDFR) is a

quintuple A = (S,Q, qstart, F, T) consisting of

• A finite alphabet set S

• A finite set of states Q

• An initial state qstart ∈ Q

• A set of accepting states F ⊆ Q

• A set of labelled transitions T ⊆ Q×
(
S1 ∪ {ε}

)
×Q

Example 1 As a first example of an NDFR we have A =
(S,Q, qstart, F, T) where

• S = {’a’, ’b’, ’c’}

• Q = {0, 1, 2}

• qstart = 0

• F = {2}

• T = {(0, “a”, 1) , (1, “b”, 1) , (1, “c”, 2) , (1, ε, 2)}

February 27, 2018 2

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

At the heart of an NDFR is an edge-labelled directed

multigraph (Q, T,←−,−→, λ) where
←−−−−
(q, a, r) = q

−−−−→
(q, a, r) = r λ ((q, a, r)) = a

We generally draw this graph to represent the NDFR with

an extra arrow to indicate the start states and the members

of F drawn as double circles.

An NDFR

Semantics

Each NDFR state q ∈ Q in an NDFR A =
(S,Q, qstart, F, T) describes a language LA(q) ⊆ S

∗.

The language described by the automaton A is the language

of its start state: L(A) = LA(qstart).

Inductive definition approach

Two rules define the languages described by q:

• If q ∈ F then ε ∈ LA(q).

• If (q, s, r) ∈ T and t ∈ LA(r) then sˆt ∈ LA(q)

Meta-rule: A string is in the language associated with a state

iff it can be shown to be by a finite number of applications

of these two rules.

February 27, 2018 3

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Path through the graph approach

There is another, equivalent, way to define the language

associated with each state. We can define that w ∈ LA(q)
iff there is a path from q to some state in F such that w is

the catenation of labels along the path.

Formally: w ∈ LA(q) exactly if for some n ∈ N, there are

• n strings w0, w1, . . . , wn−1, such that

• w0ˆw1ˆ . . . ˆwn−1 = w, and there are

• n + 1 states q0, q1, ..., qn, such that

• q0 = q, qn ∈ F and

• for each i ∈ {0, ..n}, (qi, wi, qi+1) ∈ T .

Example 2 We can see that “abb” ∈ LA(0) for the NDFR

above by observing the path

(0, “a”, 1) (1, “b”, 1) (1, “b”, 1) (1, ε, 2)

Extending the the LA function to sets of states.

If R = {r0, r1, ...} is a subset of Q, define LA(R) to be the

union of LA(r0) ∪ LA(r1) ∪ · · · . I.e.

LA(R) =
⋃
r ∈ R · LA(r)

February 27, 2018 4

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Systematic state renaming

The states don’t really matter. We can systematically replace

any set of states with almost any other.

Let A be an NDFR A = (S,Q, qstart, F, T), Q̇ be any set

such that
∣∣Q̇
∣∣ ≥ |Q|, and f be a one-one total function from

Q to Q̇. Then L(A) = L(Ȧ),where Ȧ = (S, Q̇, q̇start, Ḟ , Ṫ)
is derived from A as follows:

• q̇start = f (qstart)

• Ḟ = {q ∈ F · f (q)}

• Ṫ = {(q, a, r) ∈ T · (f (q), a, f (r))}

For implementation purposes, we often rename states so

that the set of states is {0, .. |Q|}.

February 27, 2018 5

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

All regular languages are described by

NDFRs

Next we will see that every language described by a regular

expression can also be described by an NDFR.

To do this we will show how an arbitrary regular expression

x can be translated into an NDFR A(x) such that

L(x) = L(A(x)).
This translation is called Thompson’s construction.

Each NDFR constructed by Thompson’s construction will

have a start state, that has no incoming transitions, and one

accepting state, that has no outgoing transitions.

• For regular expressions ∅, ε, and a, we can construct

automata:

• For regular expression (x;y), we first construct A(x) and

A(y), using Thompson’s construction. If necessary, the

states are renamed so that the two automata have disjoint

state sets. Finally, we combine them as follows to get

A((x;y)).

February 27, 2018 6

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

• For regular expression (x | y), we first construct A(x)
and A(y), using Thompson’s construction. If necessary,

the states are renamed so that the two automata have

disjoint state sets. Finally, we combine them and add

two new states and four new transitions, as follows to get

A
(
(x | y)

)
.

• For regular expression (x∗), we first construct A(x),
using Thompson’s construction. Finally, we add two new

states and two new transitions as follows to getA
(
(x∗)

)
.

February 27, 2018 7

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Recognition algorithms

A two-finger algorithm

We want an algorithm for the following problem. Given a

string w0 and an NDFR A = (S,Q, qstart, F, T) determine

whether or not w0 ∈ L(A).
Suppose you put one finger of your right hand on a state in

the NDFR and one finger of your left hand at a point in the

string.

Initially your fingers are on qstart and at the start of the

string.

• r — the state your right finger is on.

• w — the portion of the string to the right of your left

finger.

At each step you can do one of the following

• Stop

• Follow an ε-labelled transition with your right finger

∗ r := q where q is some state such that (r, ε, q) ∈ T

• Follow a symbol-labelled transition

∗ Move your right finger along some transition labelled

by the next symbol; move your left finger one place to

the right.

∗ r, w := q, s where q, s, and a are such that

w = [a]ˆs and (r, [a], q) ∈ T

The algorithm ends after any number of moves

February 27, 2018 8

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

var r := qstart ;
var w := w0 ;
while true

if true then

jump out of the loop

� there is an ε-labelled transition out of r then

r := q, where q is any state such that

(r, ε, q) ∈ T
� ‖w‖ > 0 and there is an labelled transition out

of r labelled with w(0) then

r, w := q, tail(w), where q is any state such that

(r, [w(0)], q) ∈ T ;
f := w = ε ∧ r ∈ F

You can think of this algorithm as the rules for a game of

solitaire.

• You win the game if f = true at the end of the game.

• You lose the game if f = false at the end of the game

There are a number of places where you may have to make

choices

(a) When to stop playing (if a move can be made)

(b) Which kind of move to make (if a both kinds are possible)

(c) Which ε-labelled transition to take (if more than one is

available)

(d) Which w(0)-labelled transition to take (if more than one is

available)

February 27, 2018 9

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

If you are lucky (or good) at making choices, you can always

use this algorithm to show that a string is in the language

described by the NDFR.

However, if luck is not with you, you may find the algorithm

fails even if it could have succeeded. Furthermore, the

algorithm could loop forever by following a cycle of epsilon

transitions.

The best we can say for the algorithm is that

• if it succeeds (f = true), then the string is certainly in

the language, but

• if it fails (f = false) or loops forever, we don’t know, as

we might have made a poor choice

February 27, 2018 10

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Magical coins

Imagine, though, that you have a magical lucky coin.

Whenever you have to make a choice, you flip the magic

coin.

The magic coin has the following property: Whenever it is

tossed to make a decision:

• If one option leads to certain failure and the other to

possible success, the coin will pick the option that can

lead to success.

• In any other circumstance, the result of the coin is

arbitrary.

The two-finger algorithm used in conjunction with the

magical lucky coin will succeed, if the string is in the

language, and will either fail or loop forever if the string is

not.

Let’s take luck and magic out of the algorithm.

February 27, 2018 11

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

The nondeterministic recognition algorithm

First some definitions.

Let A = (S,Q, qstart, F, T) be an NDFR, r ∈ Q, R ⊆ Q,

and a ∈ S

• ε-closure(r), is the set of states reachable from r using 0

or more transitions labelled with ε.

r ∈ ε-closure(r) and

if p ∈ ε-closure(r) and (p, ε, q) ∈ T then q ∈ ε-closure(r)

• ε-closure(R) is the set of states reachable from any r ∈ R
using only 0 or more transitions labelled with ε.

ε-closure(R) =
⋃

r∈R

ε-closure(r)

Note that R ⊆ ε-closure(R).

• δ(r, a) is the set of states reachable from r by a single

transition labelled a.

δ(r, a) = {q ∈ Q | (r, [a] , q) ∈ T}

• δ(R, a) is the set of states reachable from any r ∈ R
using a single transition labelled a.

δ(R, a) =
⋃

r∈R

δ(r, a)

February 27, 2018 12

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Suppose we have a string “abc”. If you follow the two-

finger algorithm, what states could be the current state after

reading this string, i.e. what states could your finger be on?

• You start with qstart as the current state but, even before

reading the ‘a’, you can follow ε transitions, and so, after

reading zero symbols, the current state can change to any

of the states in ε-closure(qstart). Let R0 be this set.

• After reading the ‘a’, the current state can become any

state connected to a state in R0 by a transition labelled

‘a’, thus

δ(R0, ‘a’)
but you can then follow ε transitions to reach other states.

Thus after reading the ‘a’ the current state could be any

state in

R1 = ε-closure(δ(R0, ‘a’))

• Similarly after reading “ab”, the current state can be any

of the states

R2 = ε-closure(δ(R1, ‘b’))

• Finally after reading “abc”, the current state can be any

of the states in

R3 = ε-closure(δ(R2,‘c’))

Thus “abc” is in the language iff any of these states are

accepting, i.e., if

R3 ∩ F �= ∅

This is how the recognition algorithm works.

February 27, 2018 13

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

We can construct an algorithm for recognizing a string w0
with an NDFR

〈 f ′ = (w0 ∈ L(A))〉

We use variables w ∈ S∗ and R ⊆ Q. The invariant is that1

w0 ∈ L(A) if and only if w ∈ LA(R)

and that R is closed under ε transitions: R = ε-closure(R).
The nondeterministic recognition algorithm

input: a string w0 and an NDFR A = (S,Q, qstart, F, T)
output: a boolean f

specification: 〈f ′ = (w0 ∈ L(A))〉
var w := w0·
var R := ε-closure(qstart)·
// inv: (w0 ∈ L(A)) = (w ∈ LA(R))
// inv: R = ε-closure(R)
while w �= ε ∧ R �= ∅ do (

let a, s | w = [a]^s ·
R := ε-closure(δ(R, a)) ;
w := s) ;

f := (R ∩ F �= ∅)
This gives us a way of recognizing regular expressions:

Convert the regular expression to an NDFR and then run the

above algorithm.

The disadvantage is that the running time of each iteration

is proportional to the size of R. The number of iterations is

‖w0‖. Since R can be as big as Q, the time taken can be

roughly proportional to |Q| × ‖w0‖.

1 Recall that LA(R) is the union of all LA(r) for r ∈ R.

February 27, 2018 14

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Correctness (optional)

The correctness of the recognition algorithm boils down to

four simple theorems.

In all cases A = (S,Q, qstart, F, T), R ⊆ Q, a ∈ S, and

s ∈ S∗:
Theorem: L(A) = L (ε-closure(qstart))
Theorem:

s ∈ L(R) if and only if s ∈ LA(ε-closure(R))

Theorem: If R = ε-closure(R) then

[a]ˆs ∈ LA(R) if and only if s ∈ LA(δ(R, a))

Theorem: If R = ε-closure(R) then

ε ∈ LA(R) if and only if R ∩ F �= ∅

Exercise: Prove these theorems.

February 27, 2018 15

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Functional approach to recognition (optional)

We can succinctly write the recognition algorithm as a

functional program.

Define a function ρ : S∗
tot
→ 2Q.

recognize(w) = (ρ(w) ∩ F �= ∅) where

ρ : S∗
tot
→ 2Q

ρ(ε) = ε-closure(qstart)
ρ(sˆ[a]) = ε-closure(δ(ρ(s), a))

Theorem sˆt ∈ L(A) if and only if t ∈ L(ρ(s)).
Then w ∈ L(A) if and only if ρ(w) ∩ F �= ∅.

February 27, 2018 16

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Deterministic Finite State Recogniz-

ers (DFRs)

A Deterministic Finite State Recognizer (DFR) is an NDFR

such that

• There are no transitions labeled by ε

Thus ε-closure(q) = {q} for all q ∈ Q

• For each state-symbol pair (q, a), there is exactly one r

such that (q, [a], r) ∈ T

I.e. |δ(q, a)| = 1, for all q ∈ Q and a ∈ S

Under these restrictions, the size of R in the

nondeterministic recognition algorithm always 1.

If we have a DFR, we can define δ̄(q, a) such that

δ(q, a) =
{
δ̄(q, a)

}
. I.e. δ̄(q, a) is the sole member of

δ(q, a)

Consider the recognition algorithm running when we have a

DFR. The size of set R will always be 1

We can represent variable R ⊆ Q by variable r ∈ Q:

R = {r}

This is a data transformation.

February 27, 2018 17

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

The deterministic recognition algorithm

input: a string w0 and a DFR A = (S,Q, qstart, F, T)
output: a boolean f

specification: 〈f ′ = (w0 ∈ L(A))〉
var w := w0
var r := qstart
f := true
// inv: w0 ∈ L(A)⇔ w ∈ LA(r)
while w �= ε do (

let a, s | w = [a]^s ·
r := δ̄(r, a) ;
w := s)

f := r ∈ F
By using numbers for states and symbols, we can represent

δ̄ as an matrix.

Then the running time for this algorithm is proportional to

the length of of w0.

This gives us another approach to recognizing regular

expressions, which is potentially very efficient.

• Convert the RE to an NDFR using Thompson’s construc-

tion, or some other construction that accomplishes the

same thing.

• Convert the NDFR to an equivalent DFR.

• Match using the deterministic recognition algorithm.

Next, we look at how to accomplish the second step.

February 27, 2018 18

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

From NDFRs to DFRs

If you try to design a DFR for a complex language, you

may find it is far more difficult than designing an NDFR

for the same language. It seems that NDFRs may be a

more powerful tool for describing languages than are DFRs.

However, in a sense this is not true. It turns out that for any

NDFR A there is an DFR Ȧ such that L(A) = L(Ȧ). Here

is one way to do it.

The naive subset construction algorithm

input: An NDFR A = (S,Q, qstart, F, T)
output: A DFR Ȧ = (S, Q̇, q̇start, Ḟ , Ṫ)
specification:

〈
L(Ȧ′) = L(A)

〉

Q̇ := {R | R ⊆ Q} // So Q̇ is the power set of Q.

q̇start := ε-closure(qstart)
Ḟ := {R ⊆ Q | F ∩R �= ∅}
Ṫ := {a ∈ S,R ⊆ Q · (R, a, ε-closure(δ(R, a)))}

(NB In this algorithm, the ε-closure and δ functions are with

respect to A.)

Proof sketch: The idea is to show that, for each R ⊆ Q,

LȦ(R) =
⋃

q∈R

LA(q)

The problem with this algorithm is that it always generates a

large number of states:
∣∣Q̇
∣∣ = 2|Q|. Some of these states may

not be reachable from the start state, and hence contribute

nothing.

As an optimization, we could consider only ε-closed sets as

states. I.e. Q̇ := {R | R ⊆ Q ∧R = ε-closure(R)}.

February 27, 2018 19

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

There is a better algorithm that only generates states that are

reachable from the start state.

The subset construction algorithm

input: An NDFR A = (S,Q, qstart, F, T)
output: A DFR Ȧ = (S, Q̇, q̇start, Ḟ , Ṫ)
specification:

〈
L(Ȧ′) = L(A)

〉

What we do is to compute the set of all sets R that might

arise in the nondeterministic recognition algorithm.

W is a set of DFR states that have been discovered, but not

explored.

Q̇ is the set of states that have been discovered and explored.

When we explore a state we find all its out-going transitions

and all the states they go to.

q̇start := ε-closure(qstart) ;
var W := {q̇start}·
Q̇ := ∅ ; Ṫ := ∅ ; Ḟ := ∅ ;
while W �= ∅ do (

let q̇ | q̇ ∈W ·
W :=W − {q̇} ;
Q̇ := Q̇ ∪ {q̇} ;
if q̇ ∩ F �= ∅ then Ḟ := Ḟ ∪ {q̇} else skip ;
for each a ∈ S do (

let ṙ = ε-closure(δ(q̇, a))·
Ṫ := Ṫ ∪ {(q̇,[a],ṙ)} ;
if ṙ �∈ Q̇ then W :=W ∪ {ṙ} else skip))

(NB In this algorithm, the ε-closure and δ functions are with

respect to A.)

Example: Find a DFR for L(‘x’; ‘y’∗ | ‘x’∗; ‘y’).

February 27, 2018 20

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

After running the subset construction algorithm we can

systematically rename the states in Q̇ with small natural

numbers so that Ṫ can be efficiently represented with an

array.

Now we can ‘efficiently’ recognize regular expressions

• Translate the r.e. to an NDFR

• Translate the NDFR to a DFR

• Replace subsets with numbers

• Optionally minimize the number of states in the DFR

• Execute the deterministic recognition algorithm

Note that the NDFR will be about the same size as the

regular expression, but the number of states in the DFR can

be exponential in the number of states of the NDFR. This is

why I put quotes around ‘efficiently’.

An alternative approach is

• Translate the r.e. to an NDFR

• Execute the nondeterministic recognition algorithm

The first approach may be best if the regular expression

is not too large and you intend to execute the recognition

algorithm many times for the same r.e., or on a large

complex text. The Unix program grep uses this approach.

The second approach may be best if the r.e. is so large that

exponential blow-up is worrying or if speed of constructing

the machine is more important than speed of executing

it. The Unix program fgrep uses the second approach (for

speed), as do many lexer generators (e.g. JavaCC).

February 27, 2018 21

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Regular Languages

Let’s make the following definitions (some are temporary).

• A regular language is a language described by some

regular expression

• An NDFR language is a language described by some

NDFR

• A DFR language is a language described by some DFR

We have shown that any regular expression can be translated

to an equivalent NDFR and any NDFR to an equivalent

DFR and so we know

regular languages ⊆ NDFR languages ⊆ DFR languages

Furthermore any DFR is an NDFR and so every DFR

language must also be an NDFR language:

regular languages ⊆ NDFR languages = DFR languages

In the next section, we will see that any NDFR can be

translated into an equivalent regular expression and so

regular languages = NDFR languages = DFR languages

Once we have done that, we no longer need the terms

“NDFR language” and “DFR language,” we just use the

term “regular language.”

February 27, 2018 22

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

From NDFRs to Regular Expressions

Next we look at how to convert any NDFR into an RE.

To help us do this, we will define:

A Regular Expression Finite Recognizer (REFR) is just like

an NDFR, except that the transitions are labeled with regular

expressions over S.

The language described by each state is defined by two rules

• If q ∈ F then ε ∈ LA(q)

• If (q, x, r) ∈ T then L(x)ˆLA(r) ⊆ LA(q)

Meta-rule: A string w is in L(q) only if it can be proved so

by finite application of the above 2 rules.

Equivalently, we can define that w ∈ LA(q) iff there is a

path from q to some state in F such that w is in the language

of the catenation of labels along the path.

I.e., w ∈ LA(q) iff for some n ≥ 0, there are

• n + 1 states q0, q1, ..., qn,

• n regular expressions x0, x1, ..., xn−1,

• such that, for each i ∈ {0, 1, ..., n− 1}, (qi, xi, qi+1) ∈ T
,

• q0 = q, qn ∈ F , and w ∈ L((x0;x1; . . . ;xn−1))

The language defined by the automaton is the language of

its start state: L(A) = LA(qstart).

Any NDFR can be trivially translated to an REFR.

We will look at an algorithm for translating an arbitrary

NDFR into a regular expression.

February 27, 2018 23

theo
Pencil

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

The NDFR to RE algorithm

input: An NDFR A0 = (S0, Q0, qstart0, F0, T0)
output: An RE x

specification: 〈L(x′) = L(A0)〉
We start by making an REFR copy, A = (S,Q, qstart, F, T),
of A0

A := convertNDFRtoREFR (A0)
As the algorithm modifies A, we maintain, as an invariant,

L(A) = L(A0).
The rest of the algorithm consists of four steps

• Step 0. Ensure that there is one accepting state and that

there are no transitions into the initial state or out of the

accepting state.

• Step 1. Make sure each pair of nodes has no more than

one transition between them.

• Step 2. Eliminate all nodes that are not initial or

accepting.

• Step 3. Output the remaining regular expression.

February 27, 2018 24

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Step 0

In this step we ensure that the REFR has

• no edges into its initial state qstart,

• exactly one accepting state F = {qfinal} with qfinal �=
qstart

• no edges out of its accepting state.

This step is easily accomplished by adding (if needed) a new

initial state, a new accepting state, and ε-labelled transitions.

Step 1

In this step we ensure that each pair of nodes has at most

one transition between them

for all pairs of states q and r in Q

coalesceTransitions(q, r)

where coalesceTransitions is defined by

procedure coalesceTransitions(q, r) is

if there is more than one transition from q to r

let x0, x1, ..., xn−1 be the labels on those

transitions

remove all transitions from q to r from T

add (q, (x0|x1|...|xn−1), r) to T

February 27, 2018 25

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Step 2

Goal: reduce the number of states in the automaton to 2.

We eliminate states one at a time.

while there are more than two states do (

let q be any state that is not initial nor accepting ·
eliminate(q))

The loop invariant for this repetition is that the REFR has

• a single accepting state, qfinal, with qfinal �= qstart

• no transition to its initial state nor from its accepting state

• at most one transition between any two states, and

• L(A) = L(A0)

Eliminating state q is as follows:

procedure eliminate(q) is

for all p and r in Q such that p �= q and r �= q and

there are transitions from p to q and from q to r·
let x be such that (p, x, q) ∈ T ·
let z be such that (q, z, r) ∈ T ·
if there is a transition from q to q then (

let y be such that (q, y, q) ∈ T ·
add (p, (x; (y∗);z), r) to T)

else

add (p, (x;z), r) to T ;
coalesceTransitions(p, r) ;

remove from T all transitions either to or from q ;

remove q from Q

February 27, 2018 26

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Step 3

At this point we have two states, qstart and qfinal, and one or

zero transitions

• If there is a transition (qstart, y, qfinal) then x := y

• Otherwise output x := ∅

February 27, 2018 27

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

In summary

• Regular expressions, DFRs, NDFRs, and REFRs are

formalisms that all can express the same set of languages:

the regular languages.

• All have the same limitation: Fixed, finite memory. Thus

this theory is very important for hardware designers as

well as software designers.

• DFRs are efficient for recognition.

• For a given language, the smallest NDFR or regular

expression can be far smaller than the smallest DFR.

• Thus converting an NDFR or RE or REFR to a DFR may

entail an ‘explosion’ in the number of states. The DFR

may be unacceptably big.

• Regular expressions, being textual, are easy to integrate

into user-dialogs (e.g., search dialogs on websites, in

Eclipse, UltraEdit, and vi) programming languages (e.g.

Perl, JavaScript, sed, lex, JavaCC), and libraries (e.g.,

java.util.regexp, regex.h).

• Regular expressions are very convenient for expressing

many languages, while NDFRs occasionally give elegant

solutions to problems where regular expressions do not.

REFRs give the best of both worlds. (For example,

C/Java style comments.)

• Example: JavaCC’s lexical analyzer generator uses a kind

of REFR for input and NDFRs for implementation.

February 27, 2018 28

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Not all languages are regular

Here we will look at how to prove that not all languages are

regular.

As an example we will prove that the language LP of

balanced parentheses is not regular.

Or alphabet is S = {‘(’, ‘)’}.

Some strings in the language: ε, “()”, “()()”, “((()())())”

Some strings not in the language: “)”, “(”, “((())”, “((())))”

Aside.

Recall that in a DFA every state has one outgoing transition

for each symbol.

And there are no ε transitions.

For any DFA A = (S,Q, qstart, F, T) define a function

σ(q, ε) = q

σ(q, [a]ˆt) = σ(r, t), where {r} = δ(q, a)

So σ(q, s) is the state the DFA is in if it starts in q and reads

s.

Note that

• (0) sˆt ∈ L(A) if and only if σ(σ(qstart, s), t) ∈ F .

• (1) For any infinite sequence of states, some state must

occur at least twice.

• (2) For any infinite sequence of strings s0, s1, s2, ...,

there must be two different numbers i and j such that

σ(qstart, si) = σ(qstart, sj).

end of aside.

February 27, 2018 29

Advanced Computing Concepts Slide Set 1-2. Finite Recognizers Theodore Norvell

Now we prove that LP is not regular by contradiction.

Proof: Assume (falsely) that LP is regular.

Then there is a DFA A = (S,Q, qstart, F, T) for LP .

Consider strings s0 = ε, s1 = “(”, s2 = “((”, s3 = “(((”, ...

And strings t0 = ε, t1 = “)”, t2 = “))”, t3 = “)))”, ...

Clearly siˆtj ∈ LP if and only if i = j.
By (2

) there are numbers i and j such that i �= j and

σ(qstart, si) = σ(qstart, sj).
Let q = σ(qstart, si) = σ(qstart, sj).
Since siˆti ∈ LP , we have σ(q, ti) ∈ F , from (0).

Therefore σ(σ(qstart, sj), ti) ∈ F .

And so sjˆti ∈ LP , by (0). But this is not true.

Contradiction.

We can only conclude that there is no DFA for LP, and so

LP is not regular.

February 27, 2018 30

